UNIVERSITYOF
BIRMINGHAM

Thoth: A Domain-Specific Language for
Multitier Web Development

Submitted in conformity with the requirements for the degree of
MEng in Computer Science and Software Engineering

Abdullah Elsayed
Supervised by: Dr. Vincent Rahli

School of Computer Science
University of Birmingham

April 2023
Revised in November 2023

I, Abdullah FElsayed confirm that the work presented in this dissertation is my own. Where information
has been derived from other sources, I confirm that this has been indicated in the dissertation.

Abstract

Multitier programming enables the development of the typical 3-tiers (database, server, and client) of a web
application in a single compilation unit using a multitier language. This approach makes developing web
applications easier than the current approach, which requires combining multiple tools and programming
languages. There have been many multitier programming languages proposed in the literature, but they
have failed to gain the attention of the community because they usually lack support for the tools required
to build web applications.

We advocate that multitier programming languages should be interoperable with existing general-purpose
languages, enabling developers to benefit from the rich ecosystem of these languages. The proposed
language is designed to address the impedance mismatch problem that can happen in the 3-tier architecture
as well as reduce the amount of boilerplate code required in web app development. It offers a set of
declarations that can be used to develop all parts of web applications and abstracts the low-level details of
web development. Additionally, it is designed to be interoperable with TypeScript to address the problem
of adoption that faced previous multitier languages. This enables developers to benefit from the rich
ecosystem of JavaScript/TypeScript. The language also compiles to human-readable code using existing
tech stacks, giving developers the freedom to take the compiled code and further develop their apps when
the language becomes limiting.

The language is evaluated through a series of experiments that measure its effectiveness in reducing
development effort, eliminating the impedance mismatch problem, and reducing the learning curve. The
results indicate that the language can significantly reduce the amount of code required to build a web app
while improving the quality of the code and that it is easy to learn.

Table of Contents

Abstract
1 Introduction
1.1 Background
1.1.1 Impedance Mismatch Problem
1.1.2 Boilerplate Code Problem
1.2 Related Work L e
1.2.1 Multitier Programming Lo
1.2.2 No-boilerplate Programming L Lo

2 Analysis and Specification

3 Key Features and Syntax

3.1 App Configurations e e
3.2 Data Models e
3.2.1 Model Fields e
3.2.2 Relations

3.3 Queries ..o e
3.4 UL Components v v v v v ittt e e
3.4.1 Render Expressions e
3.4.2 General Components
3.4.3 Fetch Components
3.4.4 Action Components e e e
3.4.4.1 Create and Update Forms

3.4.4.2 Delete Buttons e

3.5 Pages . .o
3.6 Authentication and Permissions L
3.7 Customization and Inline TypeScript L

4 Design and Implementation Details
4.1 Compiler Architecture L
4.2 Compiled APD . - . o o
4.3 Syntax Highlighting
5 Evaluation

5.1 Evaluation through Application Development
5.2 Evaluation on Requirements L Lo
5.3 User Evaluation L L e
5.4 ISSUES e e

6 Conclusion
6.1 Future Work e e

7 Appendix 1: Language Grammar
8 Appendix 2: Source Code

9 Appendix 3: Applications Source Code

27
27
29
30
31

33
33

34

38

40

10 Appendix 4: User Experiment

References

54

74

List of Figures

1.1 3-tier architecture L 2
1.2 Impedance mismatch problem. L 2
2.1 The stars of each GitHub repository over time. 5
3.1 Formstyling o e 14
4.1 compiler architecture 20
4.2 Endpoint IR example.o 23
5.1 Todo app user interface. L 28
5.2 Chatroom user interface. L 28
5.3 Kanban board user interface. 29
10.1 Participants’ programming and web experience. 60

10.2 The rating distribution of each code snippet, as rated by the participants. 60

List of Tables

5.1 Lines of code required to implement each app in the DSL and NodeJS/ReactJS including
empty lines and excluding build configuration files.

Chapter 1

Introduction

We propose a new multitier domain-specific language (DSL) called Thoth that enables developers to
build the database, server, and client tiers of web applications as a single, mono-linguistic program. Thoth
enables developers to create web apps without writing excessive boilerplate code by offering a set of
declarations that abstract most of the low-level details of web development. Multitier development is a
better approach for developing web applications because with the currently available tools, developers
have to build the different parts of the application using different tools and programming languages. This
separation can cause a problem best known as the impedance mismatch problem, as we are going to explain
in section 1.1.1. The declarative approach that our language implements has never been implemented by
other multitier languages before, as we will see later in this chapter. Using the DSL, developers can
define data models, queries, and interactive user interfaces, as well as implement common web features
like authentication and authorization seamlessly.

In addition, Thoth compiles to real-time applications by default using server-sent events (SSE). It compiles
to a NodeJS server and a ReactJS client, but it is designed to be framework-agnostic. This means that
the compiler can be easily modified to compile to other frameworks. Thoth is also interoperable with
TypeScript, which allows developers to benefit from the JavaScript/TypeScript ecosystem. The declarative
nature of the language can be limiting, which is why we focused on creating a way for developers to easily
customize the DSL declarations. Additionally, we wanted to enable them to take the compiled application
and further develop it without using the DSL. That is precisely why we designed the language to compile
to easily understandable human-readable code. We will discuss how we achieved these goals in greater
detail in the following chapters.

1.1 Background

Modern web apps are typically built using the 3-tier architecture. In this architecture, the application is
divided into three layers, each with its own responsibility and functionality (Figure 1.1). The client tier
is the first tier of the architecture, and it is in charge of rendering the user interface and handling user
interactions. This tier includes the client application, which runs on the user’s browser and is typically
built with HTML, CSS, and JavaScript. The client app sends HTTP requests to the backend API and
receives responses in JSON, XML, or HTML format. The logic tier is the architecture’s second tier. This
tier consists of a backend API, which is typically written in a programming language such as Java, Python,
Go, or others. It is in charge of processing client requests and responding to them. It is also in charge
of handling data validation, authentication, and permissions, as well as communicating with the database
to perform create, read, update, and delete (CRUD) operations on the data. The database tier is the
third tier of the architecture, and it is in charge of storing and managing data. This tier consists of
a database running on the same or a separate machine from the server. It is created with a database
management system such as MySQL, PostgreSQL, or MongoDB, which handles data storage, retrieval,
and manipulation while ensuring data consistency and integrity.

In summary, the lifecycle of most web apps works as follows: whenever a user interacts with the client

app, the app sends an HTTP request to the backend API. The backend API receives and processes the
request, then sends a response back to the client app. Finally, the client app renders the response on the
screen for the user.

000

Request Query

@ Response Result

Browser Server Database

Figure 1.1: A diagram representing the 3-tier architecture.

1.1.1 Impedance Mismatch Problem

However, the separation in layers that the 3-tier architecture provides can help make the development of
full-stack apps more modular because each layer can be developed and maintained independently. This
can cause a problem known as impedance mismatch. In general, impedance mismatch happens when two
components in a system have different data models, data structures, or data representations. This can
lead to communication problems, which can cause unexpected errors in the system and prevent it from
functioning correctly.

For instance, suppose the client app has an HTML form that sends the wrong data representation to the
server. As shown in Figure 1.2a, the client app sends the age to the server as a string, but the server
expects the age as an integer. In this case, the server will fail to handle the HT'TP request coming from the
client, leading to unexpected results. Similarly, this can happen between the server and the database when
the server implements the wrong data models for the tables in the database. As shown in Figure 1.2b,
the server is trying to select a field called email from the user table, but the user table in the database
does not have a field called email.

000 HTTP: POST /api/user SELECT name, email
DOy b — | FROM user
[— — | WHERE user.id = 1;
age: "25
}
Browser Server Server Database
POST /apilusers TABLE user {
id: Int;

name: String; name: String;
age: Int; age: Int;

}

Figure 1.2: Impedance mismatch problem.

1.1.2 Boilerplate Code Problem

Building full-stack apps requires too much boilerplate code, which makes the development time-consuming.
Boilerplate code in full-stack web applications refers to the repetitive code that must be written. This code
is often necessary for the app to function correctly but does not directly contribute to the application’s
unique features or functionality. It includes simple input validations, such as checking if the server received
the correct data types, or verifying if the client sent all the required inputs. Additionally, setting up the
middleware for data validation and authentication adds to this burden. Moreover, most modern web
apps commonly require features like authentication and permissions, which can be tedious to set up using
currently available tools. Here are some examples of common boilerplate code:

1- Validation schemes: Validation schemas can be used by validation middlewares to validate if the
client app sent the right data or not. Listing 1.1 shows a schema that validates that clients sent a JSON
object with fields username and password of type string. When the client fails to send any of the required
fields or sends the incorrect data types, this schema will throw an error. The code uses a TypeScript
validation library called Zod[1].

O~ O Ut WN -

0O~ Ut WN -

/** An example in NodeJS/ExpressJS and Zod */
import { z } from 'zod';

export const signup = z.object ({
data: z.object ({
username: z.string({

required_error: '“username is required',
b,
password: z.string({
required_error: '“password is required',
b,
)

I

Listing 1.1: Validation schema example.

2- Middlewares: Middlewares are used to perform extra operations on the request before handing it to
the function that is responsible for handling it. Middlewares are usually used to do data validation or
check user permissions. The code in Listing 1.2 shows how middlewares can be used for data validation.
/** An example in NodeJS/ExpressJS */

const express = require('express');
const app = express();

/** A function that uses the validation schema and validates the body of the request */
function validationMiddleware(req, res, next) { /_ body */ }

/**% A function that handles the requests */
function signUpUser (req, res, next) { /_ body */ }

/** Route */
app.post('/api/auth/signup', validationMiddleware, signUpUser) ;

Listing 1.2: Middlewares example.

3- Simple CRUD: Simple CRUD queries require routing, request handling, and validation schema. In-
stead of just writing the database query, developers will have to implement that for most API endpoints.
For example, if the API endpoint just implements a simple read query that reads all records from a table
in the database, it has to be implemented with all the boilerplate around it to be functional.

4- Implementing features twice: Some features have to be implemented twice Like authentication and
validation. For example, if some content in the app requires authentication to be viewed by the users, the
authentication part of the app has to be implemented once on the client-side and again on the server-side.
Also, validation schemas have to be implemented twice for validating forms on the client and validating
the data sent by the client on the server.

1.2 Related Work

There are existing solutions in the literature that try to solve the problems that we have introduced. In
this section, we are going to talk about the approaches of each one and their drawbacks.

1.2.1 Multitier Programming

In recent years, there has been a growing interest in multitier programming in literature. Several languages
have been proposed to allow for the development of full-stack web applications in a single language without
the client-server distinction. Multitier languages are beneficial for developing web apps because developers
can write a complete web app without thinking about the client-server distinction, and the compiler splits
the code as needed and takes care of all the communication. Here are some of the languages that have
introduced novel approaches to developing full-stack web apps:

N O U W N

Links

Links[2] is a statically-typed functional language that offers developers a solution to create web apps in
a single language. It achieves that by requiring the developers to annotate their code with “client” or
“server” annotations on functions levels so that the compiler can split the code. Any app built using Links
compiles to a client app in JavaScript, database queries in SQL, and the remained Links code is interpreted
on the server. Although Links provides a type-safe web programming model, which reduces the risk of
errors and vulnerabilities in the application, it still has several problems that prevent it from being widely
adopted. It is a functional programming language and has unfamiliar syntax, which can make it difficult
to learn for developers who are not familiar with this paradigm.

Opa

Similar to Links, Opal[3] is a statically-typed functional language that offers the same features as Links and
also requires the code to be annotated. Opa apps are compiled into a NodelJS server, a JavaScript client
app, and a MongoDB database. It automates many aspects of modern web application programming, such
as Ajax/Comet client-server communication, event-driven and non-blocking programming models. Opa
did not have the same issues as Links because it used syntax similar to JavaScript, which many developers
are familiar with. Moreover, Opa allows developers to reuse existing JavaScript libraries by enabling them
to interact with external JavaScript code. Additionally, Opa’s standard library includes the popular Ul
library jQuery, further enhancing its capabilities for web application development. This made it easy for
developers to learn Opa and adopt it.

Hop

Unlike Links and Opa, Hop[4] is a dynamically-type language. It is one of the first multitier languages
introduced to solve the problem of developing full-stack apps in a single code that runs on the client
and the server. The language has native support for HTML, server-side web workers, and WebSockets.
Unlike Links and Opa, the language syntax is similar to JavaScript and allows developers to specify
server-client annotations on an individual expression level. Developers use the service keyword to define
services, which are essentially JavaScript functions that are automatically invoked when an HTTP request
is received. Unlike Links and Opa, developers can use the ~{ marker within the service to switch from
server-side to client-side context. For example, in the code snippet in Listing 1.3, alert("world") will
run on the client while the rest will run on the server.
service hello() {
return (

<html>

<div onclick=~{ alert("world") }>hello</div>

</html>

)
}

Listing 1.3: Hop example.

1.2.2 No-boilerplate Programming

Frameworks are typically used to build each layer of a web app. To build client apps, for example,
developers typically use JavaScript Ul frameworks such as ReactJS or Angular. Similarly, they build
backends with frameworks such as Django, Flask, or ExpressJS. Using any of the tools mentioned reduces
the amount of boilerplate code that must be written. However, there is still boilerplate code required to
be written, such as writing configuration files for both the client and server apps, as well as extra code
such as the examples mentioned previously.

Wasp

Wasp[5] appeared in 2020, offering a novel approach to developing full-stack apps without boilerplate code.
Its goal is to enable developers to describe the common features required by most web apps and then write
the rest in ReactJS for the client app, NodeJS for the server app, and Prisma for the database. Wasp
accomplishes this through the use of declarations. Wasp declarations allow developers to write what they
want rather than how they want it. Wasp is only a boilerplate prevention solution; it is not a multitier
language like Links or Opa.

Chapter 2

Analysis and Specification

As discussed in the previous chapter, there are several existing tools in the literature designed to support
multitier programming for full-stack apps and to address the issue of boilerplate code. Some of the
previously introduced multitier programming languages faced challenges that hindered their widespread
adoption. For instance, languages such as Links and Hop lacked interoperability with existing general-
purpose languages, which made them lack support for tools required for web app development while Opa
allowed developers to access JavaScript libraries. Languages like Links were built using a syntax and
programming paradigm unfamiliar to most developers, making them difficult to learn and adopt.

As shown in Figure 2.1, Opa was the most preferred language compared to the other two. Our approach
aims to create a DSL that is interoperable with TypeScript and enables developers to access JavaScript
libraries, like Opa. Additionally, it will address the problem of boilerplate code using the same approach
as Wasp. In this chapter, we will outline the requirements for a multitier language for developing web
apps that might be appealing to developers.

—— hop
links
—— opalang

1200 4

1000 A

800 A

600

Number of stars

400 -

200 A

0 1 2 3 4 5 6 7 8 9 10 11 12
Period (years)

Figure 2.1: The stars of each GitHub repository over time.

R1. Support multitier programming

The DSL must enable developers to write web applications in a single program without thinking about
the client-server distinction. Data models, database queries, and user interfaces should all be defined in
the same compilation unit. Although developers can use server resources directly on the client, the syntax
of the language should still define a clear distinction between client and server resources so that no secrets
are accidentally revealed. The language will be compiled and checked for errors across all tiers at compile

time. This will prevent problems like impedance mismatch and thus limit runtime errors.
R2. Allow developing full-stack apps declaratively

The DSL must allow developers to specify application features using declarative syntax. Declarative
programming allows developers to express the desired outcome of an operation or process rather than
specifying how to achieve that outcome. For common full-stack web application functionality such as forms,
routing, authentication, and permissions, the DSL must provide high-level abstractions and components.
The declarative syntax must be intuitive and simple to learn, allowing developers to build applications
quickly without wasting time and effort on implementation details. This declarative approach was inspired
by the Wasp model, which demonstrated great potential for avoiding boilerplate code.

The DSL will help increase productivity by eliminating the need for boilerplate code and improving the
maintainability of the application code by allowing developers to develop full-stack web applications declar-
atively. Furthermore, it will eliminate the need for previous multitier languages’ client-server annotation
method, which was used to allow the compiler to distinguish between the client and the server. The
annotation method is typically error-prone and makes debugging the code difficult. By using declarations,
the compiler will be able to differentiate between client and server code, the codebase will remain readable
for developers, and the developer experience will be enhanced.

R3. Compile to human-readable and type-safe TypeScript code using existing tech stacks

The DSL must provide a compiler that can generate human-readable and type-safe TypeScript code. This
means that the compiler must be able to translate the DSL’s declarations and high-level abstractions into
low-level TypeScript code that developers can easily understand and modify. To compile well-structured
apps, the DSL must make use of existing tech stacks. The generator of the compiler will only compile to
a NodelJS server and a ReactJS client because this is the most used stack in the world according to the
“Stack Overflow Developer Survey 2022”[6]. Even though the DSL must compile to NodeJS and ReactJS,
it should be framework-agnostic. This means that the compiler should be able to compile to any currently
available tech stacks.

By compiling existing tech stacks to human-readable and type-safe code, developers can take the compiled
code and further develop it without using the DSL. Because the declarative approach with high-level
abstractions that we are attempting to achieve can sometimes be limiting, it is necessary to provide
developers with the ability to easily opt out of developing their app using the DSL.

R4. Real-time by default

The compiled app must include real-time functionality by default, allowing developers to create applications
that can update and display data in real-time without writing additional code or configurations. This
means that the application must receive and display data and state updates as they occur, without the need
for a manual refresh of the page. This functionality can be accomplished through the use of technologies
such as WebSockets, long/short polling, or SSE.

By making the compiled app have real-time functionality by default, the DSL will increase the interac-
tivity and responsiveness of the app, providing a more seamless and engaging user experience. This is
also beneficial for applications that require frequent updates, such as chat apps and collaborative tools.
Furthermore, it will save developers time and effort when implementing real-time functionality and ensure
that the app meets the expectations of users who expect highly interactive apps.

R5. Allow interoperability with TypeScript

The DSL must be interoperability with TypeScript, a popular statically-typed superset of JavaScript.
This will enable developers to write custom code and extend the DSL’s functionality. Because of the
interoperability with TypeScript, developers will be able to take advantage of the rich ecosystem of third-
party libraries and tools available in the JavaScript/TypeScript ecosystem. The JavaScript/TypeScript
ecosystem is one of the largest in the world of web development, with thousands of libraries and tools
available to help developers build web applications. By making the DSL interoperable with TypeScript it
should avoid the lack of community support that affected previous multitier languages.

[\

Chapter 3

Key Features and Syntax

In this chapter, we will provide a comprehensive introduction to the DSL by explaining its key features and
syntax. The main goal of this chapter is to give a thorough understanding of the language’s declarations and
expressions. The DSL’s syntax is designed around a few declarations. In each section in this chapter, we
are going to explain how to use these declarations to build web applications using Thoth. For information
on the language grammar defined in Backus—Naur form (BNF), please refer to Appendix 1.

3.1 App Configurations

The app declaration serves as the project’s starting point and is used to define global configurations such
as the app’s title and authentication configuration. Every app built with the DSL must be declared, and
there can only be one app declaration. The app declaration takes a JSON-like object as a value. In the
app declaration body, only the title field is required. The app’s title will appear in the browser tab.
We will talk in more detail about authentication in a later section. Apps can be declared as shown in the
code in Listing 3.1.

app ExampleApp {

title: "Example App"
}

Listing 3.1: App config example.

3.2 Data Models

Data models represent entities in the application domain and map to database tables. Models are declared
using the model declaration. Every model must be declared with a name following the PascalCase conven-
tion. Each model must define several fields. For example, a blogging platform can define Post data model
as shown in Listing 3.2.

3.2.1 Model Fields

Model fields are like columns in a database table. They define what kind of data can be stored in the table.
Each field has a name, a type, an optional type modifier, and an optional attribute. The field name is a
string that identifies the field within the model. The name must start with a letter and can be followed
by any combination of letters, numbers, or underscores. It is common to name fields using the camelCase
convention.

When defining model fields, it is necessary to specify the type of each field when defining it. There are
two main categories of types: scalar types and user-defined types. The DSL has four primary scalar types:
Int, String, Boolean, and DateTime. User-defined types refer to data models that are created by the
user. These user-defined types can be used as types for fields to specify relations between different models
in the application. In the next section, we will elaborate on the topic of relations in greater detail.

0O Utk WN

©

The type of field can be modified by appending either of two modifiers: [] to make it a list or ? to make
it optional. Optional lists are not supported, so type modifiers cannot be combined.

Attributes are also optional and can be used to provide additional information about a field. For example,
you can specify that a field is unique (i.e., it cannot have duplicate values). All attributes start with the
special character @. Fields can have one or more of the following attributes:

e @id: The @id attribute defines a unique field that can be used to identify individual model records.
A model can only have one ID field because a field that implements the @id attribute is similar to a
PRIMARY_KEY field in relational databases. The ID field must be of Int type.

e @unique: The Gunique attribute can be used to make a field have unique values. For example, in a
blogging platform, each post must have a unique slug, which is a human-readable, unique identifier
used to identify a post instead of id.

e @default: Scalar fields can be created with default values using the @default attribute. The
@default attribute takes the default value as an argument. The default value must be a literal value
of the same type as the field type, such as 5 (Int), "Hello" (String), false (Boolean), or Now
(DateTime). Now is a keyword that can be used to set a timestamp of the time when a record is
created.

e @updatedAt: The QupdatedAt attribute can be used with fields of type DateTime to automatically
store the time when a record was last updated.

e @relation: This attribute is used to define relation fields. In the next section, we will elaborate on
the topic of relations in greater detail.

The code in Listing 3.2 shows how fields can be defined using the concepts explained above. The syntax
for defining fields is similar to Prisma Schema Language[7]. First, the field name is declared, which is then
followed by the type, type modifier, and any number attributes. Each field must be declared on a new
line, and the field name, type, and attributes must be separated using a space. The example implements
a Post model that has an ID field, uses all the scalar types in the language, makes use of type modifiers,
and shows how field attributes can be used.

model Post {

id Int @id // an id field

title String // a ~String ~ field that does not have any attributes
slug String? Qunique // a unique optional field of type “String-
content String

published Boolean @default(false) // a field with “false as a default value

createdAt DateTime @default(Now) // a field with a “Now as default value

updatedAt DateTime QupdatedAt @ignore // a “DateTime field that gets updates whenever a post
record is updated and is ignored whenever posts are queried

Listing 3.2: Model example.

3.2.2 Relations

As mentioned before, models can define relations between each other. Relations are defined between
models using user-defined types and the @relations attribute. The relation must be defined in both
related models or the compiler will throw an error. The @relation attribute takes two arguments: the
first is called the relation field, and the second is called the reference field. There are three types of
relations: one-to-one relations, one-to-many relations, and many-to-many relations.

One-to-One Relations

One-to-one relations refer to relations where at most one record can be connected on both sides of the
relation. For example, in the code in Listing 3.3 each user is associated with zero or one profile through
the relation field profile in the User model. The user field in the Profile model defines a relation with
the User model by referencing the field id in the User model. The userId relation field represents the
foreign key. In this case, the relation field must implement the @unique attribute to make sure that every
user is associated with only one profile.

O © 00O U W

—_

—_
O © 00O U WN -

© 00~ Uk WN

model User {
id Int Qid
profile Profile?

}

model Profile {
id Int @id
user User C@relation(userId, id)
userId Int Qunique // relation field (used in the “@relation’ attribute in line 8)

}

Listing 3.3: One-to-one relation example.

One-to-Many Relations

One-to-many relations refer to relations where one record on one side of the relation can be connected to
zero or more records on the other side. As shown in the code in Listing 3.4, each user has zero or many
posts, and each post has only one user. Similar to the previous example, the User model defines a relation
with the Post model via the posts relation field. Then, the Post model references the id field in the User
model using the @relation attribute. Unlike one-to-one relations, the relation field userId in the model
Post must not implement the @unique attribute because a user can have more than one post.

model User {

id Int Qid
posts Post[]
}
model Post {
id Int @id
user User Q@relation(userId, id)
userId Int

I

Listing 3.4: One-to-many relation example.

Many-to-Many Relations

Many-to-many relations refer to relations where zero or more records on one side of the relation are
connected to zero or more records on the other side. Many-to-many relations are easy to implement by
defining that each model has a list of the other model. As shown in the example in Listing 3.5, The Post
model defines a relation field tags with the Tag model. Similarly, the model Tag defines a relation field
posts with the Post model.

model Post {

id Int @id
tags Tagll

}

model Tag {
id Int Qid
posts Post[]

}

Listing 3.5: Many-to-many relation example

3.3 Queries

The declaration of queries is a fundamental feature of the DSL that is designed to facilitate the creation of
queries on data models. It offers five distinct types of queries, including FindMany, FindUnique, Create,
Update, and Delete. Queries are defined using the query declaration, which is one of the declarations in
the DSL that must take a type and a JSON-like object as a body. The body can implement one or more
of the following entries: where, search, or data, based on the query type. Moreover, they must define the
data model to query. This can be done using the query attribute @model. Furthermore, they run on the
server only. Generally, query names should follow the camelCase convention.

The where entry is used to specify a unique field in the data model, and it is used to select an individual
record using the unique field. In contrast, the search entry is used to filter a list of records based on the

W N =

W N =

© 00O Ut WN -~

list of fields. The data entry is used to specify the fields that a Create or Update query can use to create
a new record or update an existing one.

FindMany Queries

FindMany queries are used to read a list of records from a data model. Any FindMany query must implement
a search entry that takes a list of fields that can be used to filter the records in the database. FindMany
queries cannot implement either the where or the data entries. For example, for the Post model shown
in Listing 3.2, we can implement a FindMany query that returns a list of posts or filter them based on the
published field, as shown below:

@model (Post)

query<FindMany> getPosts {

search: [published]
}

Listing 3.6: FindMany query example.

FindUnique Queries

Individual records can be read using FindUnique queries. FindUnique queries must implement the where,
and it must take a unique field, for the query to identify the record. For instance, to get a post by id, this
query can be defined as follows:

@model (Post)

query<FindUnique> getPostById {

where: id

}
Listing 3.7: FindUnique query example.

Create Queries

Create queries can only implement the data entry, which can be used to specify the fields needed to create
a new post record. The data entry takes two entries: fields a required entry that specifies non-relation
fields and relationFields an optional entry that specifies how models should be linked with each other.
Create queries must specify all the required fields in a model. For instance, consider the Post model in the
example below, the create query for this model must specify the title, content, and user fields because
they are all required. Any optional or list fields do not have to be specified. As well as fields that have
@default or @QupdatedAt attributes, because records can be created using the default values.

The Create query shown below specifies that the query can create a post record using the title and
content fields in the fields entry. While the relationFields specifies how a post record can be linked
to a user using the connect-with expression. In this case, the user field is connected to the id field of a
user record using userId field in a post record as a foreign key field without specifying them.
@model (Post)
query<Create> createPost {
data: {
fields: [title, content],
relationFields: {
user: connect id with userId
}

}
}

Listing 3.8: Create query example.

Update Queries

A record can be updated by defining an update query. Update queries must define the where and data
entries. Similar to FindUnique queries, the where entry must specify a unique field, for the query to be
able to find the record that needs to be updated. Where the data entry takes the field that can be updated.
The example below defines an update query that can update the title, content, or published fields of
a post record.

10

N O U W N

W N

[\

0O~ O Ut W

@model (Post)
query<Update> updatePostById {
where: id,
data: {
fields: [title, content, published]
}
¥

Listing 3.9: Update query example

Delete Queries

To define a delete query, the query must only implement the where entry. The body of the delete query
is similar to FindUnique queries.
@model (Post)
query<Delete> deletePostById {
where: id

}
Listing 3.10: Delete query example.

3.4 UI Components

User interfaces can be built using the component declaration. Components can be declared with a type,
or without declaring a general Ul component. There are several types of components, including fetch
components (FindMany, FindUnique) and action components (Create, Update, Delete). Fetch components
are used to get data from the server using a query, to represent it to the user. While action components
are used to mutate data on the server. All component declarations run on the client. Like models, Ul
component names must follow the PascalCase convention.

3.4.1 Render Expressions

UI structures can be built using the render expression which, takes XML-like structures. The DSL provides
a modified version of HTML called XRA that can be mixed with for-expressions, if-expressions, variables,
literals, or user-defined UI components. Elements within the render expression can be styled using any
CSS classes provided by the WindiCSS|[8], which is a utility-first CSS framework integrated natively in
the DSL. Within render expressions, literals and variables can be rendered using the { ... } notation as
follows:

render (<div>{ "Hello, world" }</div>) // renders a string
render (<div>{ 42069 }</div>) // renders a number
render (<div>{ user.firstName }</div>) // renders a variable

Listing 3.11: Rendering literals and variables example.

if-expressions can be declared using the following syntax:

// if-expression
render (
<div>
[% if condition %]
{ "Condition is true" }
[% endif %I
</div>
)

// if-else-expression
render (
<div>
[% if condition %]
{ "Condition is true" }
[% else %]
{ "Condition is false" }
[% endif %]
</div>

Listing 3.12: If-expression example.

11

NO Ut WN -

0O~ O Ut W

0~ Uk WN -

Moreover, for-expressions can be declared using a similar syntax as if-expression:

render (
<div>
[%i for element in list %]
{ element }
[% endif %]
</div>
)

Listing 3.13: For-expression example

3.4.2 General Components

Typically, general components are used to build stateless UI components. This is useful to make building
UIs more modular and makes maintaining Ul components easier. The example below shows a component
that takes an argument post of type Post as an argument and then presents the title and content with
a text of color gray using the CSS classes provided by WindiCSS.
component PostDetailComponent (post: Post) {
render (
<div className="text-gray-800">
<div>{ post.title }</div>
<div>{ post.content }</div>
<div>
)
}

Listing 3.14: General component example.

3.4.3 Fetch Components

There are two types of components that fetch data using a read query. These are FindUnique and
FindMany components. Fetch components must implement a JSON-like body that takes 4 required entries:
findQuery, onError, onLoading, and onSuccess. The findQuery entry takes a query of type FindMany
or FindUnique depending on the component type. This query is used ot fetch the data from the server.
While the entries must take a render expression with a Ul structure to view for the user on each case. For
example, we can implement a FindMany component that presents a list of posts to the user using the query
shown in Listing 3.6, as follows:
component<FindMany> PublishedPostsList {
findQuery: getPosts ({
search: {
published: true
}

}) as posts,
onError: render(<div>{ "Error getting posts" }</div>),

onLoading: render (<div>{ "Loading posts..." }</div>),
onSuccess: render (
<div>

[% for post in posts %]
<PostDetailComponent post={ post } />
[% endfor %]
</div>
)
}

Listing 3.15: FindMany component example.

The above example defines a component that uses the getPosts query to get a list of published posts and
then saves the result in the variable posts. When a FindMany query is used, it can take an optional JSON
object to set values for the search fields defined in the query. In each case, the component will render the
appropriate Ul structure for the user. As shown in line 12, the component makes use of the component
implemented in Listing 3.14 to show the post details.

3.4.4 Action Components

Action components provide a way for developers to create user interfaces that enable users to mutate data
by performing actions, such as creating, updating, and deleting. Create components, for example, are

12

used to create forms that enable users to add new data to a particular model. These components utilize
a query to define the fields that the form should contain. Update components, on the other hand, are
used to create forms that enable users to update existing data in a model. These components are similar
to Create components but include pre-populated values for the fields that the user is updating. Finally,
Delete components are used to create action buttons that enable users to delete a record from a particular
model.

3.4.4.1 Create and Update Forms

Create and Update components has several entries that define their behavior and structure. Firstly, the
actionQuery entry specifies a query that will be executed when the form is submitted. This query is
responsible for creating a new record in the database with the data submitted in the form or updated an
existing one. Secondly, the formInputs entry is used to define the input fields in the form. Each input
field is defined by a name and an input type. Additional entries can also be added to the input field
definition, such as styles, placeholders, and default values. The label entry can also be used to define a
label for each input field, improving the accessibility and usability of the form. Thirdly, the formButton
entry is used to define the button that will submit the form. This entry allows developers to customize
the text displayed on the button, as well as any styles that should be applied to the button. Finally, the
globalStyle entry is used to define the global styles that will be applied to the entire form. This entry
allows developers to customize the appearance of the form, such as the background color and font styles.

The DSL provides a range of input types that developers can use to create type-safe forms for their web
applications. The available input types include TextInput, EmailInput, PasswordInput, NumberInput,
RelationInput, DateTimeInput, DateInput, and CheckboxInput. The TextInput input type is used to
capture textual data, while the EmailInput input type is specifically designed to capture email addresses.
The PasswordInput input type is used to capture passwords, with the input field automatically masking
the characters entered. These three input types can be implemented with fields of type String. The
NumberInput input type is used to capture numerical data, such as age or quantity, and can be used with
fields of type Int only. The RelationInput input type is used to capture relational data, such as linking
a user to a post they authored. The DateTimeInput input type is used to capture both a date and time,
while the DateInput input type is used to capture only a date. These two input types can be used with
DateTime fields. Finally, the CheckboxInput input type is used to capture Boolean data, such as selecting
a checkbox to indicate agreement to terms and conditions.

The code shown in Listing 3.16 implements a Create component, which uses the createPost query
implemented in Listing 3.8 as its action query. Moreover, the component implements form inputs, which are
inputs specified in the createPost query. It implements two text inputs for the title and content fields.
Additionally, it implements an input user of type RelationInput, which specifies that the submitted post
should be linked to the currently logged-in user. The value for this input is pre-populated by default and
hidden from the user. The form cannot implement fields that are not specified in the createPost query.
It also must implement all the fields specified by the query. In the end, the component defines a form
button, which is the button used to submit the data. The provided example uses the globalStyle entry
to define global styles for the form elements. In the globalStyle, the form entry defines the background
color of the form, while the inputContainer and input entries define the background color of the input
container and the input field, respectively. The inputLabel entry defines the style of the label associated
with the input field, and the inputError entry defines the style of the error message displayed if the input
is invalid. In addition to the global styles, developers can also define styles for individual input fields using
the style entry. In the example provided, the style entry is used to override the global styles to set a
different background color and text color to elements in the title input field. The styling for this example
is represented by the diagram in Figure 3.1.

13

O~ O Ut WN -

component<Create> PostCreateForm {

actionQuery:
globalStyle: {
form: "bg-green-500",
inputContainer:
input: "bg-red-500",
inputLabel:
inputError:
}’
formInputs: {
title: {
style: "bg-white",
label: {
style:
name :
}3
input: {
type: TextInput,
placeholder:
style:
}
I,
content: {
label: {
name :
Fo
input: {
type: TextInput,
placeholder:
}
I,
user: {
input: {
type:
isVisible: false,
defaultValue:
}
}
}’
formButton: {
style:

name: "Create"

createPost (),

"bg-blue-500",

"text-black",
"text-red-

500"

"text-red-500",
"Post Title"

"Enter post title",
"bg-white text-red-500"

"Post Content",

"Enter post content"

RelationInput,

connect id with LoggedInUser.id

"bg-yellow-500",

Listing 3.16: Create form example.

A\

‘ Title [Enter post title

|

Enter post content

3.4.4.2 Delete Buttons

Delete buttons are created like Create and Update components but Delete buttons only implement
actionQuery and formButton entries. The example below uses the deletePostById query implemented
in Listing 3.10 and passes the value of the argument id to the where argument of the query.

Figure 3.1: A diagram representing how form styling works.

14

© 00~ U WN

N O U W N

0O~ Utk WN -

component<Delete> PostDeleteButton(id: Int) {
actionQuery: deletePostById({
where: id
b,
formButton: {
style: "bg-yellow-500",
name: "Delete"
}
}

Listing 3.17: Delete button example.

3.5 Pages

Pages in the DSL are defined by page declarations. Pages are created by composing one or more com-
ponents and they define the layout and structure of the page. When a user navigates to a specific route,
the corresponding page is displayed. Page names must follow the PascalCase convention. Every page
must implement an attribute called @route, which takes a string to define the route for the page. In the
example below, the page Home renders the two components PublishedPostsList and PostCreateForm
implemented in Listing 3.15 and Listing 3.16 consecutively. This page can be accessed by navigating to
the root route of the app.
@route("/")
page Home {
render (
<PublishedPostsList />
<PostCreateForm />

)
}

Listing 3.18: Page example.

3.6 Authentication and Permissions

Authentication is a common feature in modern web apps and it is important to provide developers the
ability to implement this feature in their apps in the simplest way possible. To implement authentication
in the app, developers have to create a data model that represents users and then define in the app
configuration that the app should have authentication using this data model. The user model must define
the fields shown in Listing 3.19. Then to make this model used by the DSL use this model as the user
model for the app, developers must implement the following configurations shown in Listing 3.20 in the
app declaration. The entry userModel takes a reference to the user model as indicated by the name. While
entries in lines 5-9 reference fields in the user model. The entry onSuccessRedirectTo is used to define
where the user should be redirected to when they login to the app. While the entry onFailRedirectTo is
used to define where the user should be redirected to when they try to access an app resource that requires
authentication without being logged in.

model User {

id Int eid
username String Qunique
password String

isOnline Boolean @default(false)
lastActive DateTime @default (Now)
...other fields...

}

Listing 3.19: User model example.

15

0O Utk WN

Uk W N -

app AppWithAuth {

title: "App with Authentication",

auth: {
userModel: User,
idField: id,
isOnlineField: isOnline,
lastActiveField: lastActive,
usernameField: username,
passwordField: password,
onSuccessRedirectTo: "/",
onFailRedirectTo: "/login"

Listing 3.20: Authentication configuration example.

To create sign up and login forms, developers can do that by creating components of type SignupForm
or LoginForm. The SignupForm and LoginForm are created like Create components. The SignupForm
must implement all the required fields of the user model. While LoginForm must implement the username
and password fields only. The example in Listing 3.21 shows how a simple login form can be created.
Moreover, LogoutButton are created like Delete components as shown in Listing 3.22.
component<LoginForm> MyLoginForm {

formInputs: {
username: {

input: {
type: TextInput,
placeholder: "Enter username'
}
1,
password: {
input: {
type: PasswordImput,
placeholder: "Enter password"
}
}
1,
formButton: {
name: "Login"
}

}
Listing 3.21: Login form example.

component<LogoutButton> MyLogoutButton {
formButton: {
name: "Logout"

}
}

Listing 3.22: Logout button example.

Users might need to grant some permissions before interacting with specific parts of the app. For example,
users might need to be authenticated to view a certain page or do some operation. This can be achieved
in the DSL by using the @permissions attribute and it can take either one of the following values IsAuth
or OwnRecord. The IsAuth value makes sure that only authenticated users have permission to view this
page, for example. While OwnsRecord is used to specify that users can do some operations only on their
own records in the database. The permission attribute can be used only be used with query and page
declarations. When it is used with the query declaration, it means that only users who have the specified
permissions can do the operation. But, when it is used with the page declaration, it can only take IsAuth
as a value and it means that only authenticated users can view the page.

The code in Listing 3.23 shows how the permissions attribute can be used with queries and pages by
implementing a FindMany query which specifies that users can only fetch their own records from the Post
model when they are authenticated. Furthermore, it implements a page that users can only view when
they are authenticated.

16

N O U W N

© 00O U WN -

@model (Post)
@permissions (IsAuth, OwnsRecord)
query<FindMany> getPostsWithPermissions { /** body */ }

@route (" /posts")
@permissions (IsAuth)
page PostsListPage { /#** body */ }

Listing 3.23: Permissions example.

3.7 Customization and Inline TypeScript

The DSL offers developers the option to write inline TypeScript code in the DSL. Also, the DSL allows
developers to import JavaScript/TypeScript libraries. This allows developers to write custom code when
the DSL becomes limiting. First, to import a JavaScript/TypeScript library developers have to specify
the name of the package and the version in the app declaration as shown in Listing 3.24.
app AppWithTSCode {
title: "App with TS code",
serverDep: [
("is-even", "71.0.0")
15
clientDep: [
...client dependencies...

]
}

Listing 3.24: Importing a JavaScript library example.

The syntax for declaring custom queries and components in our DSL is the same as for default ones but
they implement different entries. Both require a JSON-like object that must have a fn entry, which takes
a TypeScript function as its value. Additionally, an optional entry can be included called imports to
specify the imports required for the query or component. The TypeScript code must be defined inside the
following notation [| ... [].

The query custom function must be a TypeScript ExpressJS arrow function and it is an async func-
tion by default. Within the query function, developers can use Prisma using the Prisma client variable
prismaClient. Prisma is the ORM used on the server to communicate with the database. Furthermore,
the return value of all custom queries must be defined in the query declaration signature. If the return
value of a query does not match a defined data model, developers can create custom types using a declara-
tion called type. The type declaration provides a way to create custom types in the DSL to insure type
safety of custom queries. All custom queries must have a route that specifies one of the following HTTP
methods: get, post, put, and delete to use when calling this query. The custom query shown in Listing
3.25 receives a number from the client, checks if it is even, save the number in a table called EvenNumber,
then returns IsEvenMessage back to the client.

Custom queries can be used with default components based on the HTTP method specified in the @route
attribute. For instance, queries that implement the post method must be used in Create components.
While queries that implement the put method must be used in Update components. Queries that implement
the get method can be used with FindUnique and FindMany components based on their return value. If
the return value is a list then the query can only be used with FindMany components, otherwise, it can
only be used with FindUnique component. Finally, queries that implements the delete method must only
be used with Delete components.

Custom components can take arguments, and be used in other components or pages, and any query
defined in the app can be used in the custom components. Queries defined in the app can be accessed
using the Queries object in the custom TypeScript code. The code in the fn entry should take a valid
React functional component body code. For example, the code shown in Listing 3.26 implements a custom
component that takes the username of the currently logged-in user as an argument and has a form that
takes a number and submits it to the isEven query implemented in Listing 3.25. After submitting the
form the component will show either “Even” or “Odd” to the user.

17

O~ O Ut WN -

model EvenNumber {
id Int @id
number Int

}

type IsEvenMessage {
number Int
isEvent Boolean

}

@route("post", "/is-even")
query<Custom> isEven : IsEvenMessage {
imports: [|
import isEven from "is-even";
17,
fn: [|
(req: Request, res: Response, next: NextFunction) => {
// get the number from the request body
const number = req.body.number;
// check if the number is even using the is-even library
if (isEven(number)) {
// save the number in the EvenNumber table
await prismaClient.evenNumber.create ({
data: { number }
19
}

// send a response back to the client
res.send ({ number, isEven: isEven(number) });

Listing 3.25: Custom query example.

18

O~ O Ut WN -

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47
48
49
50

component<Custom> IsEvenComponent (username: String) {
imports: [I

import React, { setState } from "react";

11,
fn: [|
// declare form data local state
const [fromData, setFormData] = setState<{ number: number }>({ number: null });
//declare response data local state
const [responseData, setResponseData] = setState<{

number: number;

isEven: boolean;
P>

number: null,

isEven: null

});

// updates the form data state with the change
const handleInputChange = (event: React.ChangeEvent<HTMLInputElement>) => {
setFormData ({ number: event.target.number.value })

}

// submits the form data to the isEven query and updates the component state with the

response
const handleSubmit = async (event: React.FormEvent<HTMLFormElement>) => {
// the query is used with the fetch API

const response = await fetch(Queries.isEven(), {
method: "post"
body: JSON.stringify({ ...formData })
1
if (response.ok) {
const data = await response.json();
setResponseData(data) ;
}
}
return (
<>
{ responseData.isEven !== null ? (" Number ${responseData.number} is ${responseData.
isEven ? "even" : "odd"}, ${usernamel}) : "" }
<form onSubmit={handleSubmitl}>
<input
type="number" name="number"
value={responseData.number}
onChange={handleInputChange}
/>
<input type="submit" value="Submit"/>
</form>
</>
)
|]

Listing 3.26: Custom component example.

19

Chapter 4

Design and Implementation Details

In this chapter, we’ll take a look on how we managed to compile to human-readable code and how the
compiler’s type checker helps preventing the impedance mismatch problem from happening. Additionally,
we will explore the architecture of the compiled application in detail, examining how it is structured.

4.1 Compiler Architecture

The compiler architecture consists of three components: the frontend, AppSpecs generator, and code
generator, as presented in Figure 4.1. Each of these components will be discussed in detail in the following
sections. For further information on the source code of the compiler, please refer to Appendix 2.

Frontend

/ \ Code Generator

Symbol Tables
Builder
Database Generator

Server G
Client Generator

AST, Symbol Table AppSepcs AppSpecs
Generator

o|qeL [0quiAs

AST
-~

Code

Type
Checker

- J

Templates

Figure 4.1: A diagram representing the compiler architecture.

Frontend

The frontend of the compiler is responsible for two main tasks: parsing the code and constructing an
AST, as well as building a symbol table using the parsed AST. Once the symbol table has been built, the
frontend conducts type-checking to ensure that the code is semantically correct. Since the DSL does not
have type inference feature, it requires type annotations to be included in the code. The DSL implements
a nominal type system this comes as a downside for being interoperable with TypeScript. To prevent
errors that could result in impedance mismatch within the application, the compiler performs a series of
checks. These checks include but are not limited to:

¢ UndefinedError: This is a type of error that can occur when attempting to use an unbound
declaration in general. For example, this error can occur when creating a Create component that
specifies a form input for an undefined field in its actionQuery. Additionally, it can arise when the
code is attempting to retrieve a non-existent field in a type that the query returns in the FindMany
and FindUnique components. The purpose of this error is to alert developers that a particular
tier of the application is trying to use an undefined resource from another tier or use an undefined

20

O © 00O Uk WN

—_

O Ut WK

0~ U WN -

el e
W= O©

declaration. For instance, the code shown in Listing 4.1 will raise this error because the getExamples

query is trying to filter the Example model using an undefined field title.

model Example {

id

Int Qid

name String
anotherName String

}

@model (ExampleModel)
query<FindMany> getExamples {
search: [title]

}

Listing 4.1: UndefinedError example.

QueryTypeError: When a component receives a query of the wrong type, the compiler will raises
this error. For instance, Create components always expect a query of type Create or Custom with an
HTTP method of post. This error helps developers ensure that their code adheres to the expected
query types for each component. For example, the code shown in Listing 4.2 will cause an error
because the ExamplesList component is trying to fetch examples using a query of type Create.

@model (ExampleModel)
query<Create> createExample { /#* body */ }

component<FindMany> ExamplesList {
findQuery: createExample(),

}

body...

Listing 4.2: QueryTypeError example.

RequiredFormInputError: The compiler throws an error when the code of a Create or Update
component does not specify an input for a required field in their actionQuery. For instance, if
the actionQuery of a Create component requires two fields but the component only provides input
for one of them, the compiler will raise an error. This error alerts developers to the missing input
and helps ensure that their code correctly implements all required fields for the query. The code
presented in Listing 4.3 will raise this error because the ExampleCreateForm does not implement
inputs for all the fields required in the createExample query.

@model (ExampleModel)
query<Create> createExample {
data: {

}
}

fields: [name, anotherName]

component<Create> ExampleCreateForm {
actionQuery: createExample(),
formInputs: {

}
}

name: { /** body */ }

Listing 4.3: RequiredFormInputError example.

FormInputTypeError: This error occurs when the input of a form in a Create or Update com-
ponent attempts to implement the wrong input type for a specific field. For example, if a data
model has a field named title of type String, but the create form for the query that uses this data
model implements an input of type NumberInput, the compiler will raise this error. The purpose
of this error is to alert developers to the input type mismatch and ensure that the form inputs are
correctly implemented to match the expected field types. The example in Listing 4.4 will arise this
error because the form is trying to implement an input of type NumberInput for the field name of
ExampleModel model implemented in Listing 4.1 which is of type String. Instead, this field should
be of type TextInput.

21

O~ O Ut WN -

Tk W N

component<Create> ExampleCreateForm {
actionQuery: createExample(),
formInputs: {
name: {
input: { type: NumberInput }
}
}
}

Listing 4.4: FormInputTypeError example.

By using these checks on the code, we prevent the impedance mismatch problem from occurring, and we
also ensure that related runtime errors do not occur. For example, the app will not have an HTML form
on the client that submits the wrong data to the server or a query on the server that tries to fetch or
create a record from a data model using undefined fields or incorrect types. These checks help ensure that
the app functions correctly without unexpected errors that can lead to poor user experience or application
failures. There are many more error that the language’s compiler can handle, please refer to Appendix 2
to learn more about them in the compiler’s source code.

AppSpecs Generator

The AppSpecs generator uses the AST and symbol table to collect information about the database tables,
backend API, and client app. Based on this information, it generates three different generic intermediate
representations (IR), one for each part of the app. This IR contains common information extracted and
derived from the code.

The IR for the backend API includes all the necessary information to create controllers, routes, and
validators. Each endpoint in the API requires a controller function that handles the client request by
executing a database query, a route that maps the request to the function, validation schemas, and
middlewares to check permissions and validate data. The information contained in the IR is generic and
can be used with any backend to generate code for nearly any framework.

For example, the IR for the query implemented in Listing 4.5, is represented in Figure 4.2. The AppSpecs
generator uses the query definition to derive relevant data to construct the various parts of the IR. The
route specifications are derived by determining the query’s type, such as FindUnique, which indicates that
the endpoint can be accessed using the GET HTTP method. Additionally, other information, such as the
path, parameters, and required middleware, is derived from the query definition. Similarly, the controller
function specifications are created to contain information about the inputs the query requires and other
relevant details similar to the route specification. The validator specification includes information about
the fields used in the query and their types. These details are later used to create validation schemas and
generate type-safe backend APIs.

In addition, the AppSpecs generator creates IR for Ul components and pages that can be used to compile
the client and for data models to create database tables using the same technique. The generator identifies
critical information for all parts of the application and stores them in data structures similar to the ones
presented in Figure 4.2.
@model (ExampleModel)
@permissions (IsAuth, OwnsRecord)
query<FindUnique> getRecordById {

where: id

}
Listing 4.5: FindUnique query.

22

query__id getRecordByld
path example-model
params (int, id)
http_ method GET
middlewares | [IsAuth, OwnsRecord]

(a) Route specifications.

query__id getRecordByld
query__type FindUnique
model__name | exampleModel
where true
search false
data false
owns__record true

(b) Function specifications.

5 [T |

(c) Validator specifications.

Figure 4.2: Endpoint IR example.

Code Generator

To generate the code, the code generator takes the IR generated in the previous step and applies it to
the pre-written templates. The templates define the structure and logic of the generated code. The code
generator is designed to be framework-agnostic, which means that it can generate code for any framework
or library as long as the appropriate templates are available.

The code generator uses a template engine to merge the IR with the templates and produce the final code.
The code in Listing 4.6, represents a simple template similar to the one implemented in the compiler using
Jinja[9]. This template can be used to compile a NodeJS/ExpressJS controller function. In the example,
we use the query_id as a name for the controller function. In the function, there is an object called
payload, which is an object that stores the data sent in the HT'TP request. It gets constructed based on
the entries that the query implements. The pre-written templates include a middleware that is used to
parse and validate the data in the HT'TP request before executing the controller function, then it stores
the result in the req object. We use the object validatedPayload to reconstruct a new payload object
that can be used with the Prisma query. After that, we use the prismaClient to create a query based
on the model_name and the query_type. Eventually, the function returns a response if the success or an
error otherwise. Using this technique, we were able to compile human-readable code. This technique is
used to compile all the parts in the app from the server to the client.

23

export const {{ query_id }} = async (req: Request, res: Response, next: NextFunction) => {
try {
const payload = {

{% if where or search %}

where: {
{% if where %}
...req.validatedPayload?.where,
{% endif %}

{/% if search %}
...req.validatedPayload?.search,
{% endif %} },

{% endif %}

{% if data %2}
data: req.validatedPayload?.data,
{% endif %}
};

const result = await prismaClient.{{ model_name }}.{{ query_type }}(payload);

res.status (httpStatus.0K) . json(result);
} catch (error) {
next (error)

Listing 4.6: Controller function template example.

4.2 Compiled App

As previously mentioned, the compiler compiles to a NodeJS server, a ReactJS client, and a Prisma Schema,
which is used by Prisma ORM. In this section, we will delve into each component of the application,
discussing its functionality and design decisions.

Database

The compiler does not compile directly to SQL but instead, it compiles to Prisma schema and Prisma
queries. We are using Prisma ORM because it provides a way to create type-safe queries. The query
builder API generates type-safe queries that are statically checked at compile-time, reducing the risk of
runtime errors and making it easier to catch errors early in the development process. One of the main
features that the DSL provides is compiling to human-readable code so that we can give developers the
ability to take the compiled code to further develop it without using the DSL. That is why we are using
Prisma because it let us make sure that the compiled app is well-typed. Also, Prisma provides an easy
way to do database migration and data seeding. For example, when a table is updated with a new column,
Prisma takes care of creating the new column and filling it with data if needed. The Prisma client is
configured to use Postgresql database management but it can be edited easily to use any other relational
database supported by Prisma.

NodeJS Server

The compiler creates a representational state transfer (REST) API, which is a popular architectural style
for web development. REST APIs have been widely adopted by various industries and are used in real-
world applications such as social media platforms. They enable access to resources over HTTP, using
methods such as GET, POST, PUT, and DELETE to perform operations on resources, such as retrieving,
creating, updating, and deleting them.

One of the key benefits of REST architecture is that the server is stateless, meaning it does not store
information about previous client interactions or maintain an internal state. This helps in maintaining
the reliability and availability of the server because it becomes easier to replicate and distribute the
server across multiple machines. This, in turn, helps to prevent server crashes and outages. Additionally,
statelessness enables easy scaling, as the server does not store any state for the clients. To scale the API,
we can deploy it on multiple servers and implement a load-balancer to control traffic across them.

24

© 00O Ut WN -

17
18
19
20
21
22
23
24
25
26
27
28
29

Due to the stateless nature of the server, authentication and authorization details are not stored on the
server. Instead, the client sends authentication credentials with each request. We have implemented au-
thentication using JSON Web Tokens (JWT), which generates a compact, self-contained token containing
claims that identify the user and their permissions. After logging in or requesting access to a protected
resource, the server returns the JWT to the client, which stores it in local storage for subsequent requests.

The DSL is designed to produce a type-safe REST API. This means that when a request is received from
a client, the API verifies that the data is valid based on the specified data types and structures. To handle
invalid data types or structures, the API includes various error-handling mechanisms that notify the client
of the issue. For example, if the client sends incomplete data, the server returns an error message that
specifies the nature of the issue, as shown in Listing 4.7. This error can also be triggered if the client sends
data of an incorrect type, such as an integer value for a field that requires a value of type string. This
feature is crucial because the server API can be accessed remotely, and requests can be sent without using
the official client application. By including this type-safe feature, the API ensures that only valid data is
received and processed.

// Returned when the client sends data with missing fields
{
"status": 400,
"code": "bad_request",
"error": "invalid_input",
"message": "Invalid inputs",
"details": [
{
"code": "invalid_type",
"parameter": "title",
"message": "“title is required"

// Returned when the client sends data of the wrong type
{
"status": 400,
"code": "bad_request",
"error": "invalid_input",
"message": "Invalid inputs",
"details": [
{
"code": "invalid_type",
"parameter": "title",
"message": "Expected string, received number"
}
]
}

Listing 4.7: Errors example.

ReactJS Client

Finally, the compiler creates a ReactJS single page application (SPA), a type of web application that
enhances the user experience by dynamically updating content on a single page without requiring multiple
pages or complete page refreshes. Over the past decade, SPAs have gained popularity, especially with
modern web development frameworks such as React, Angular, and Vue. Initially, when a user accesses an
SPA, the server sends the HTML, CSS, and JavaScript files to the browser, and then the JavaScript code
takes over and interacts with the server through the backend API to retrieve or modify data without a
full-page reload. The primary advantage of SPAs is their ability to reduce the server load by only sending
the initial files, resulting in faster load times and more responsive user interfaces. Additionally, SPAs offer
a native application-like feel, providing more interactive and engaging user interfaces. Similar to the server,
the client app includes a validation layer on HTML forms, alerting users of any incorrect data entry before
making a request to the server.

Real-time Apps by Default

Real-time web applications require a constant flow of data between the client and the server. There are
different techniques that can be used to achieve this feature. SSE allows the server to send real-time updates

25

to the client using a single, long-lived connection. WebSockets provide a bidirectional communication
channel between the client and server, allowing for real-time data exchange. Long polling involves the
client making a request to the server and waiting for a response, keeping the connection open until new
data is available. Short polling, on the other hand, involves the client regularly polling the server for new
data.

Polling is not as practical as SSE and WebSockets because it can result in a high volume of unnecessary
network traffic and latency issues, especially when there are many clients. With polling, the client sends
requests to the server at regular intervals, regardless of whether new data is available. This can cause a
large amount of data to be transmitted, even if there is no new information to send, which can result in
increased network traffic and slower response times.

In contrast, SSE and WebSockets use a push-based approach where the server sends updates to the client
only when new data is available. This eliminates the need for the client to repeatedly request new data,
reducing the amount of network traffic and improving response times. Additionally, SSE and WebSockets
both allow for real-time updates, making them more suitable for applications that require real-time data
exchange.

After careful consideration, we opted to use SSE over WebSockets for the following reasons:

e Simplicity: SSE is simpler to implement than WebSockets, making it a good choice for applications
that do not require bidirectional communication. SSE uses a simple HTTP connection to send data
from the server to the client, while WebSockets require a dedicated WebSocket connection to enable
bidirectional communication.

e Automatic reconnection: SSE supports automatic reconnection, which means that if the connec-
tion is lost, the client will automatically reconnect to the server without any user intervention. This
makes SSE more reliable than WebSockets in some cases, as WebSockets may require additional code
to handle reconnection.

o Lightweight: SSE is a lightweight protocol that requires less overhead than WebSockets, making it
a good choice for applications that need to conserve bandwidth or have limited server resources.

To make the compiled app real-time using SSE, the client sends an initial request to the server when a
page requiring data is mounted. This request loads all the necessary data and then caches it locally. After
that, the client establishes a persistent connection with the server to listen for any updates to this data.
Whenever there is a mutation on the server, the server sends an event to all connected clients containing
the updated data. Clients then update their local state using this event, ensuring that their data is up-to-
date with the server. This allows for real-time updates to be pushed to clients without the need for the
client to repeatedly poll the server for new data.

4.3 Syntax Highlighting

The DSL has a Visual Studio Code (VSCode) extension that provides syntax highlighting. This feature
is crucial for a positive developer experience because it makes the language’s syntax more readable and
understandable. Syntax highlighting provides visual cues for different parts of the code, such as keywords,
variables, and comments. It also makes it easier to spot syntax errors and other issues. The extension
is implemented using TextMate grammar, which is the standard format that VSCode uses for syntax
highlighting. TextMate grammar is widely used by other famous text editors like Sublime Text and Atom.
This makes it easy for us to support syntax highlighting in these editors too.

26

Chapter 5

Evaluation

We will demonstrate the DSL’s effectiveness in building fully-functional web apps with varying require-
ments and features. We will then conduct user experiments to evaluate the learning curve, syntax, and
developer experience of the DSL among developers with varying levels of experience. The data collected
will include the time taken to complete each task, ease of understanding the DSL syntax, and any chal-
lenges encountered. Finally, we aim to identify and address any limitations or issues of the DSL to inform
future development and improvements.

5.1 Evaluation through Application Development

The DSL aims to streamline the web app development process, minimize errors, and reduce the time and
effort required. To showcase the language’s effectiveness, we have developed 3 web apps that exemplify
its capabilities. Each app highlights distinct features of the DSL, illustrating how it can rapidly produce
functional web apps. The source code for all the 3 applications mentioned below can be found in Appendix
3.

Todo App

The Todo app is designed for creating, updating, and deleting tasks while incorporating an authentication
feature to restrict unauthorized access and actions. Its interactive interface provides real-time updates,
eliminating the need for page refreshes. One of the significant benefits of using the DSL to build the Todo
app is its capability to implement the permissions feature easily. By using the @permissions attribute,
it was effortless to specify that only authorized users could access their tasks while restricting access to
tasks created by other users. As shown in Figure 5.1, there are two users using the app and each of them
can only see their own tasks. This streamlined approach simplifies the development process and ensures
secure and efficient functionality.

27

Todo List
Todo List

Task 1- User 2
Task 1- User 1
Task 2 - User 2

Task 2 - User 1

Task 3 - User 2

Figure 5.1: Todo app user interface.

Chatroom

The Chatroom app provides users with the ability to create accounts and engage in conversations with
other users. It also includes a user list that displays all active users along with their online/offline status.
The app leverages real-time updates, eliminating the need for manual refreshing. These updates are
facilitated by a server that pushes events to clients using SSE, with the clients automatically updating
their local state in real-time. The UI for this application is shown in Figure 5.2, where we have two users
Alice and Bob messaging each other, and the state of the client app is updated in real-time. Whenever any
of them sends a message the message will be loaded for the other user automatically without refreshing
the page, as well as the status of each user will be updated. This app can have many users chatting in the
same chatroom and the app will update the state of all the clients in real-time.

Online Users Hello, I'm Bob Online Users Hello, I'm Bob
® Alce RO | o plice °

@ Bob Hi Bob, I'm Alice ® Bob Hi Bob, I'm Alice

2 | r-a— =

Figure 5.2: Chatroom user interface.

28

Kanban Board

The Kanban board app is a collaborative app that allows different users to use a Kanban board to organize
their tasks together. The app implements three columns: To do, In progress, and Done. Users can create
new tasks and they can drag and drop any task from one column to another to update its state. Like the
previously mentioned apps, all updates in this app happen in real-time. Moreover, this app shows that
developers can interop with TypeScript and use libraries available in the JavaScript/TypeScript ecosystem.
To implement this app, we used a library called react-beautiful-dnd[10], which allowed us to create the
drag-and-drop feature in the app easily. As shown in Figure 5.3 users can create tasks and drag them
between the different columns. Like the chatroom app, the state of this app is updated between all the
clients logged in automatically in real-time.

Todo Doing Done
Task 4 Delete Task 3 Delete Task 1 Delete
Created at 4/19/2023, 12:42:24 AM by test1 Created at 4/19/2023, 12:42:14 AM by test1 Created at 4/19/2023, 12:42:09 AM by test1
Task 5 Delete Task 2 Delete
Created at 4/19/2023, 12:42:30 AM by test1 Created at 4/19/2023, 12:42:11 AM by test1
Task 6 Delete

Created at 4/19/2023, 12:42:38 AM by test1

Figure 5.3: Kanban board user interface.

5.2 Evaluation on Requirements

The DSL simplifies web development by abstracting many low-level details, allowing developers to focus
on high-level functionality and features. We evaluated the effectiveness of the DSL by comparing the
lines of code required to build each app using the DSL versus using pure NodeJS and ReactJS. Table
5.1 shows that developers can create the Todo app and Chatroom app with just 15% of the lines of code
required for NodeJS and ReactJS. While apps that require TypeScript, like the Kanban Board app, require
slightly more lines of code in the DSL, the total is still much less than the lines of code required for pure
NodeJS/ReactJS development.

Table 5.1: Lines of code required to implement each app in the DSL and NodeJS/React]S including empty lines and excluding
build configuration files.

App DSL NodeJS/ReactJS
Todo App 233 1547
Chatroom 258 1580

Kanban Board 405 1669

The DSL has been shown to meet all the requirements outlined in Chapter 2 through the development of
the three discussed apps.

29

e« R1. Support multitier programming: We were able to build all three apps without the need for
tiers because the compiler was responsible for tier splitting by leveraging the different declarations in
the DSL. This allowed us to solve the impedance mismatch problem that is commonly encountered
in web development. Additionally, the DSL’s static-typing feature made it possible for the compiler
to catch errors at compile time, reducing the risk of encountering runtime errors.

« R2. Allow developing full-stack apps declaratively: The use of declarations allowed us to
abstract away low-level details, providing developers with high-level declarations to use instead. As
a result, building all three apps in the DSL was significantly easier compared to using pure NodeJS
and ReactJS, as shown in Table 5.1. Also, using the different declarations in the DSL, the compiler
was able to split the code into different tiers at compile time.

« R3. Compile to human-readable and type-safe TypeScript code using existing tech
stacks: Using the generated IR and utilizing the pre-written templates, we managed to compile to a
NodeJS server and a ReactJS client, producing human-readable and type-safe TypeScript code. As
we discussed in Chapter 4.

e« R4. Real-time by default: The Chatroom and Kanban Board apps both feature real-time updates,
with the client state syncing between all connected clients. This was made possible through the use
of SSE, which is explained in detail in Chapter 4.

« R5. Allow interoperability with TypeScript: The DSL provides developers with the abil-
ity to write inline TypeScript code using Custom queries and components. This feature allows for
greater flexibility in application development and customization. Moreover, specifying JavaScrip-
t/TypeScript packages in the app configuration enables easy interoperability with TypeScript, as
demonstrated in the Kanban Board app.

5.3 User Evaluation

The online experiment conducted to evaluate the learning curve, syntax, and developer experience of the
DSL was divided into two parts, each assessing different aspects of the participants’ experience. In the first
part, participants were presented with a working code snippet without any prior instruction on the DSL,
aimed at evaluating their understanding of the code and assessing its comprehensibility. Each question in
this section was divided into two parts: First, participants were asked to rate their understanding of the
code snippet on a scale from 1 to 5, where a higher number indicated a better understanding of the code
snippet. Second, they were asked to explain what they understood from the code snippet. This approach
effectively measured the initial learning curve and syntax of the language.

The second part aimed to assess the developer experience by providing participants with a code snippet
containing a bug and the corresponding compiler error message. Participants were then required to explain
the error in the code and suggest a solution. The experiment’s design ensured a diverse population of
participants by asking about their programming and web development experience before the experiment.

After the experiment was completed, participants were allowed to reflect on their overall experience with
the DSL and provide feedback on the language aspects that they found most appealing or confusing. This
approach allowed us to gain valuable insights into the effectiveness of the DSL and identify areas that
required improvement.

Of the 9 participants who took part in the experiment, most were experienced programmers, although not
all had experience with web development. Impressively, 5 out of the 9 participants were able to explain all
of the presented code snippets correctly, while the remaining 4 participants correctly answered an average
of 8.75 questions. These results suggest that the language syntax is easy to comprehend and that the
compiler messages were effective in identifying errors.

It is notable that, on average, it took the participants 33 minutes to solve all the questions, indicating that
they were able to grasp the language’s syntax quickly simply by reading it without any prior exposure to
DSL. This highlights the language’s intuitive nature and demonstrates the participants’ ability to quickly
comprehend the language’s syntax.

The use of the @ annotation to declare attributes were found to be confusing by many participants. Simi-
larly, the <> notation used to specify the types of queries and Ul components was found to be confusing by

30

several participants, as it is commonly used to define type parameters in many programming languages.

A few participants had difficulty understanding the process of defining one-to-many relations, particularly
in determining which parameter passed to the @relation attribute represents the foreign key. The connect
notation used to connect records also proved challenging for some participants.

Despite encountering some confusing notations and not having received any training or documentation
on the DSL, the majority of the participants were able to answer all questions correctly. This highlights
the DSL’s accessibility and user-friendly nature. Almost all of the participants found the syntax of the
language easy to interpret, while the compiler messages were found to help identify and correct errors in
the code. For more information about the questions asked and the data collected from the experiment,
please refer to Appendix 4.

5.4 Issues

In this section, we will explain some issues related to the DSL. These issues include those related to the
architecture of the compiler as well as those related to the application that the language compiles.

Problems with REST APIs

REST APIs present several challenges that can impact their performance and reliability. One common
issue is returning excessive data that the client does not need, leading to large data responses and increased
latency. Additionally, REST APIs may struggle to handle high levels of traffic, which can result in slow
response times and even system crashes. To address this issue, it may be necessary to increase the number
of servers running the API and implement efficient load-balancing and caching strategies to ensure optimal
performance and reliability.

Problems with SPAs

One of the most significant issues with SPAs is their impact on search engine optimization (SEO). Search
engines like Google rely heavily on content and links to index and rank websites. However, since SPAs
only load a single HTML file and dynamically update the content using JavaScript, search engine crawlers
have a difficult time indexing the content of the page[11]. This can result in a lower search engine ranking,
making it harder for users to find the website.

Although it is a significant problem in SPAs, there are techniques to solve it, such as server-side rendering
(SSR) and static site generation (SSG). In SSR, the server processes and renders the webpage before sending
it to the client. When a user requests a page, the server generates the HTML, CSS, and JavaScript required
for the page and sends it to the client. This approach means that the browser receives a fully rendered
page that is ready to be displayed, reducing the amount of work the browser needs to do and improving
the page load time. On the other hand, SSG generates the HTML, CSS, and JavaScript for a website
at build time, rather than at runtime. The resulting files are then hosted on a web server and served to
users as static pages. This approach allows for faster load times since the pages are pre-rendered and do
not require any server processing when a user requests them. Additionally, it improves SEQO, since search
engines can easily crawl and index static pages. Therefore, sites that use SSR or SSG have the potential
to rank higher in search engine results.

Cannot Compile to All Existing Framework

Generally, the AppSpecs are designed to be framework-agnostic, but some parts of it are generated specifi-
cally to work with certain frameworks and libraries. For instance, Ul structures are translated to JSX[12],
an XML-like language used by various Ul frameworks such as ReactJS, Preact, SolidJS, and Qwik. How-
ever, not all UI frameworks use JSX; Angular and Svelte, for instance, use their own template syntax. As
a result, the compiler’s IR can only be utilized to generate code for frameworks that support JSX.

Unsafe TypeScript Interoperability

The DSL cannot currently check the inline TypeScript code and instead treats it as a string. This can
lead to various issues, especially if the data returned by the inline code does not match the data specified
in the query signature. Such inconsistencies can result in runtime errors and cause significant problems.

31

Therefore, it is essential to exercise caution when working with inline TypeScript code in the DSL and
ensure that the returned data aligns correctly with the expected data type.

32

Chapter 6

Conclusion

In conclusion, we successfully created a DSL that generates human-readable code for a NodeJS server and
a ReactJS client. With the use of declarations, the compiler can easily identify the code for each tier in
the app. The DSL also abstracts many of the low-level implementation details required in modern web
apps, resulting in faster development without the need for boilerplate code. We demonstrated this by
building simple Todo and Chatroom apps that required only 15% of the lines of code needed in NodeJS
and ReactJS. The compiler’s type-checking feature identifies impedance mismatch related problems at
compile time, leading to more efficient web apps. Using the techniques explained for generating IR and
app code, we managed to make the compiler compile to TypeScript human-readable code. Moreover, by
leveraging template engines, we managed to make our compiler framework agnostic. The DSL generates
real-time apps by default using SSE. Also, we have shown that the language can interop with TypeScript
and make use of existing tools in the JavaScript/TypeScript ecosystem by developing the Kanban app.
This makes it more adoptable than previous multitier programming languages. The declarative approach
implemented in the language has made its code more readable and easier to debug compared to other
multitier languages that use annotations. Additionally, we have implemented tools such as expressive
error messages in the compiler and syntax highlighting to enhance the developer experience. Finally, we
demonstrated in our user experiment that the DSL has a low learning curve.

6.1 Future Work

The DSL allows for the creation of simple queries, but it cannot implement more complex queries. For
instance, some apps may require a query that paginates the data list returned by the FindMany query.
However, the DSL cannot paginate data by limiting the number of records that a query can return.
Additionally, bulk operations are not supported, meaning that the DSL lacks the feature to create, update,
or delete multiple records simultaneously.

As previously mentioned, the DSL’s current compilation to an SPA client presents limitations in terms of
SEO. To overcome this obstacle, it would be advantageous for the DSL to incorporate SSR/SSG mech-
anisms for Ul components. This addition would allow search engines to index and crawl the website’s
content, boosting its visibility and search ranking.

From the user experiment conducted, we found that some of the notations used in the DSL were confusing
to some participants. While some notations, such as the @ and connect notation, could have been clearer
to participants if they had received documentation on the DSL before the experiment, others, like the
<> notation, which is used in many languages to specify type parameters, were particularly confusing.
In addition, defining one-to-many relations proved difficult for some participants. To improve the DSL’s
syntax, we should consider creating a new notation to define query and UI component types. Additionally,
we could make the @relation attribute take named parameters to make it clearer.

33

0O~ O Ut W

© 00O U WN -

Chapter 7

Appendix 1: Language Grammar

string_literal

capitalized_identifier ::= [A-Z_][A-Za-z0-9_]+*

identifier ::= [A-Za-z_][A-Za-z0-9_]x*

string_literal ::= ''' [T']x ''!

boolean_literal ::= true | false

integer_literal ::= digit+

digit ::= ['0'-'9"']

variable_literal ::= identifier ('.' identifier)x*

literal = string_literal | boolean_literal | integer_literal variable_literal

type ::= 'String' | 'Int' | 'Boolean' | 'DateTime' | capitalized_identifier

parameter ::= identifier ':' type

connect_with_expr ::= 'connect' variable_literal 'with' variable_literal

permission ::= 'IsAuth' | 'OwnsRecord'

permissions_attribute ::= '\@permissions' '(' permission (',' permission)x* ')'

http_method ::= 'get' | 'post' | 'put' | 'delete'

route_attribute ::= '\Q@route' '(' (http_method ',')? string_literal ')'

model_attribute ::= '\@model' '(' capitalized_identifier ')'

custom_entries ::= 'fn' ':' '[|' string_literal '[|]' (',' 'imports' ':' '[|
D7

Listing 7.1: General rules

App Declaration Grammar

app_declaration ::= 'app' capitalized_identifier '{' app_entries

app_entries ::= 'title' ':' string_literal (',' auth_entry)?

auth_entry ::= 'auth' ':' '{' auth_entries '}'

auth_entries ::= 'userModel' ':' capitalized_identifier ','
'idField' ':' identifier ','
'isOnlineField' ':' identifier ','
'lastActiveField' ':' identifier ','
'usernameField' ':' identifier ','
'passwordField' ':' identifier ','
'onSuccessRedirectTo' ':' string_literal

[

34

"]

14

OOt W

[y

© 00O Ut WN

18
19
20
21
22
23
24
25
26
27
28
29
30

'onFailRedirectTo' ':' string_literal

Listing 7.2: App declaration rules

Data Models Grammar

model_name ::= 'model' capitalized_identifier '{' model_fields '}'
model_fields ::= model_field (',' model_field)=*

model_field ::= identifier type field_attributes*

field_attributes ::= '\@id' | '\Qunique' | '\@default(value)' | '\Q@updatedAt'

Listing 7.3: Model declaration rules

Queries Grammar

query_declaration ::= query_attributes+ 'query' '<' query_type '>' identifier '{' query_entries
1 } 1
query_attributes ::= permissions_attribute | model_attribute | route_attribute
query_entries = where_entry | search_entry | data_entry | custom_entries
query_type ::= 'Create' | 'FindUnique' | 'FindMany' | 'Update' | 'Delete' | 'Custom'
where_entry ::= identifier
search_entry ::= '[' identifier+ ']'
data_entry ::= 'fields' ':' '[' identifier+ ']' (',' relation_field_entry)?
relation_field_entry ::= 'relationFields' ':' '{' relation_field (',' relation_field)* '}'
relation_field ::= identifier ':' connect_with_expr
Listing 7.4: Query declaration rules
XRA Grammar
html_tag ::= SET_OF_HTML_TAGS
xra_element_name ::= html_tag | capitalized_identifier
xra_element ::= self_closing_xra_element | xra_element_opening xra_children xra_element_closing
| xra_for_expression | xra_if_expression
xra_fragment = '<>' xra_element+ '</>'
xra_children ::= xra_element | xra_literal_expression
xra_element_opening ::= '<' xra_element_name xra_element_attributex '>'
xra_element_closing ::= '</' xra_element_name '>'
self_closing_xra_element ::= '<' xra_element_name xra_element_attributex '/>'
xra_element_attribute ::= identifier '=' xra_literal_expression | string_literal
boolean_literal | integer_literal
xra_literal_expression ::= '{' literal '}'

xra_for_expression ::=
'[%" 'for' identifier 'in' identifier '%]'
xra_element | xra_fragment
'[% endfor %]

xra_if_expression ::=
'[%" 'if' condition '%]'
xra_element | xra_fragment
|[%v ‘endif' l%]'

35

31

33
34
35

(Ol e ot

©

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

32
33

49
50
51
52
53
54
55
56
57
58
59

condition ::= literal logical_operation literal
logical_operation = '==' | <t] > | ore=r | =t
render_expression ::= xra_element+ | xra_fragment+

Listing 7.5: XRA rules

Component Grammar

component_declaration ::= 'component' '<' component_type '>' capitalized_identifier ('('

parameter* ')')? { component_body }

component_body ::= render_expression | fetch_component_entries | action_form_component_entries
| action_button_component_entries | custom_entries

component_type ::= 'Create' | 'FindUnique' | 'FindMany' | 'Update' | 'Delete' | 'Custom' | '
SignupForm' | 'LoginForm' | 'LogoutButton'

find_component_entries ::=

'findQuery' ':' find_query ','

'onError' ':' render_expression ','

'onLoading' ':' render_expression ','

'onSuccess' ':' render_expression
find_query ::= identifier '(' ')'
find_query_entries ::= '{'

'where' ':' '{' where_or_search_field+ '}'

| 'search' ':' '{' where_or_search_field+ '}'
I}l
where_or_search_field ::= identifier ':' literal

action_form_component_entries ::=

'actionQuery' ':' identifier '()' ','

'formInputs' ':' '{' form_input_entry '}' ','
'formButton' ':' '{' form_button_entry '}'

(',"'" 'globalStyle' ':' '{' global_style_entry '}')?

action_button_component_entries ::=

'actionQuery' ':' identifier '()' ','
form_name_entry
(',' form_style_entry)?
form_input_type ::= 'TextInput' | 'Emaillnput' | 'PasswordInput' | 'NumberInput'
' | 'CheckboxInput' | 'DateTimeInput' | 'Datelnput’
global_style_entry ::= 'formContainer' ':' string_literal
| 'inputContainer' ':' string_literal
| 'input' ':' string_literal
| 'inputError' ':' string_literal
| 'inputLabel' ':' string_literal
form_input_entry ::= identifier ':' '{' form_input_entry_options '}'

form_input_entry_options ::=

'input' ':'
'{' form_input_type_entry
('," form_input_default_value
',' form_input_placeholder
','" form_input_visibility
',' form_style_entry)? '}'
('," 'label' ':'
'{' form_name_entry (',' form_style_entry)7 '}')?
(','" form_style_entry)?
form_input_type_entry ::= 'type' ':' form_input_type
form_input_default_value ::= 'defaultValue' ':' literal | connect_with
form_input_visibility ::= 'isVisible' ':' boolean_literal

36

'NumberInput

60
61
62
63
64
65
66

form_input_placeholder 'placeholder' string_literal

form_button_entry form_name_entry (',' form_style_entry)?

form_name_entry string_literal

form_style_entry 'style’ string_literal

Listing 7.6: Component declaration rules

Page Declaration

page_declaration ::= page_attributes+ 'page' capitalized_identifier ('(' parameterx ')')? {
render_expression }

page_attributes ::= permissions_attribute | route_attribute

Listing 7.7: Page declaration rules

37

Chapter 8

Appendix 2: Source Code

Prerequisites

Before you can build and run this code, you will need to have the following installed on your system:
1- OCaml = v4

2- Dune = v3.6

3- NodeJS = v16

4- PostgreSQL = v14.7

Building

To build the compiler, please follow the instructions below:

dune build bin/main.exe

Running To run the compile, please follow the instructions below:
Any app can be compiled using the following command.

dune exec -- bin/main.exe PATH_TO_APP DATABASE_NAME

Command Line Options

The following command line options are available for this project:

e —output_ dir: The path to the directory that will contain the compiled code. Default value: “out”

e —server_port: The port used to run the server on. Default value = 4000

To use these options, simply include them when compiling the app from the command line, as follows:

dune exec -- bin/main.exe PATH_TO_APP DATABASE_NAME --output_dir=PATH_TO_DIR --server_port=
PORT_NUMBER

The compiler creates two different directories, one for the server and another for the client. To run the
compiled app, first, ensure that the PostgreSQL server is running on the machine. Next, navigate to the
server directory and use the following command to create the database:

yarn prisma migrate dev

After that, you can run the server using the following command:

yarn dev

38

© 00O Ut WN -

17
18
19

21
22
23

To run the client, navigate to the client directory and use the same command that was used to run the
server.

Folder Structure

/main_dir
/.vscode // contains settings for vscode
/bin // contains the executable file for the compiler
/examples // contains examples for apps built using the DSL
/language_tools // contains the code for the VSCode syntax highlighting extension
/src // contains the main code for the compiler
| /analyzer // contains the code for the lexer, parser, and the type checker
| /ast // the package responsible for maintaining and formatting the AST
| /error_handler // the package responsible for creating error messages
| /parsing // the package responsible for lexing and parsing the code
| /type_checker // the package used for type checking
| | checker.ml // the main checker file, it calls the symbol table builder and the
checker
| environment.ml // the file that defines the symbol table data structure
| model_check.ml // implements the code responsible for checking data models
| query_checker.ml // implements the code responsible for checking queries models
| type_decl_checker.ml // implements the code responsible for checking the type
declaration
| | xra_checker.ml // implements the code responsible for checking the UI declaratiomns
/generator // the package used to generate the code
/specs // the package used to generate the IR
templates // contains the templates for the db, client, server
/client
/db
/server

e e Y, — = —

39

0O Utk WN

Chapter 9

Appendix 3: Applications Source

Code

Todo App

app Todo {

title: "Todo App Created by Ra",

auth: {
userModel: User,
idField: id,
isOnlineField: isOnline,
lastActiveField: lastActive,
usernameField: username,
passwordField: password,
onSuccessRedirectTo: "/",
onFailRedirectTo: "/login"

}
}
model User {
id Int @id
username String Qunique
password String
isOnline Boolean @default (false)
lastActive DateTime @default(Now)
tasks Task []
}
model Task {
id Int @id
title String
isDone Boolean @default(false)
user User @relation(userId, id)
userId Int

createdAt DateTime @default (Now)
updatedAt DateTime QupdatedAt
}

@model (Task)

@permissions (IsAuth, OwnsRecord)

query<FindMany> getTasks {
search: [title, isDone]

I

@model (Task)
@permissions (IsAuth)
query<Create> createTask {
data: {
fields: [title],
relationFields: {
user: connect id with userId

}

40

48
49
50
51
52
53
54
55

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

}

@model (Task)

@permissions (IsAuth, OwnsRecord)
query<Delete> deleteTaskById {

where: id

}

component<Create> TaskCreateForm {
actionQuery: createTask(),

globalStyle: {

"flex mt-4"

placeholder: "Enter task title",

"shadow border rounded py-2 px-3 w-full mr-4 text-grey-darker"

type: RelationInput,

defaultValue: connect id with LoggedInUser.id

style: "rounded-md bg-teal-500 text-white px-4 py-2"

formContainer:
T
formInputs: {
title: {
style: "flex w-full",
input: {
type: TextInput,
isVisible: true,
style:
}
Fo
user: {
input: {
isVisible: false,
}
¥
}’
formButton: {
name: "Create",
}

}

component<Delete> TaskDeleteButton(id: Int) {
actionQuery: deleteTaskById({

where: id

b,
formButton: {
name: "Delete",
style: "rounded
}

}

component TaskComponent
render (

<div className=

-md bg-red-500 text-white px-4 py-2"

(task: Task) {

"flex mb-4 items-center">

<div className="w-full text-gray-500 text-x1">{ task.title }</div>
<TaskDeleteButton id={task.id} />

</div>

component<FindMany> TasksComponent {

findQuery: getTasks

() as tasks,

onError: render (<div>{ "An error occurred" }</div>),
onLoading: render(<div>{ "Loading..." }</div>),

[% for task in tasks %]
<TaskComponent task={ task } />

onSuccess: render (
<>
[% endfor %]
</>

Ik

component<SignupForm> MySignupForm {

globalStyle: {
formContainer:

"bg-white shadow-md rounded px-8 pt-6 pb-8 mb-4",

41

121 input: "appearance-none border rounded w-full py-2 px-3 text-gray-700 leading-tight
focus:outline-none focus:shadow-outline",

122 inputLabel: "block text-gray-700 font-bold mb-2"

123 ¥o

124 formInputs: {

125 username: {

126 label: {

127 name: "Username"

128 1,

129 input: {

130 type: TextInput,

131 placeholder: "Enter username"

132 }

133 Fo

134 password: {

135 label: {

136 name: "Password"

137 },

138 input: {

139 type: PasswordInput,

140 placeholder: "Enter password"

141 }

142 }

143 Ty

144 formButton: {

145 name: "Signup",

146 style: "bg-blue-500 hover:bg-blue-700 text-white font-bold py-2 px-4 rounded focus:
outline-none focus:shadow-outline"

147 }

148 %

149

150 component<LoginForm> MyLoginForm {

151 globalStyle: {

152 formContainer: "bg-white shadow-md rounded px-8 pt-6 pb-8 mb-4",

153 input: "appearance-none border rounded w-full py-2 px-3 text-gray-700 leading-tight
focus:outline-none focus:shadow-outline",

154 inputLabel: "block text-gray-700 font-bold mb-2"

155 o

156 formInputs: {

157 username: {

158 label: {

159 name: "Username"

160 },

161 input: {

162 type: TextInput,

163 placeholder: "Enter username"

164 }

165 Fo

166 password: {

167 label: {

168 name: "Password"

169 ¥y

170 input: {

171 type: PasswordInput,

172 placeholder: "Enter password"

173 }

174 }

175 T

176 formButton: {

177 name: "Login",

178 style: "w-full bg-blue-500 hover:bg-blue-700 text-white font-bold py-2 px-4 rounded
focus:outline-none focus:shadow-outline"

179 }

180 %

181

182 component<LogoutButton> MyLogoutButton {

183 formButton: {

184 name: "Logout",

185 style: "inline-block align-baseline font-bold text-sm text-red-500 hover:text-red-800"

186 }

187 }

188

189 @route("/")

42

190 @permissions(IsAuth)
191 page Tasks {

192 render (
193 <div className="flex h-screen items-center justify-center bg-slate-800">
194 <div className="space-y-2">
195 <div className="bg-white shadow-md rounded px-8 pt-6 pb-8 mb-4">
196 <div className="mb-4">
197 <h1l className="text-grey-darkest text-xl1 font-bold mb-4">{"Todo List"
}</h1>
198 <TaskCreateForm />
199 </div>
200 <TasksComponent />
201 </div>
202 <MyLogoutButton />
203 </div>
204 </div>
205)
206 }
207
208 @route("/login")
209 page LoginPage {
210 render (
211 <div className="flex h-screen items-center justify-center bg-slate-800">
212 <div className="space-y-2">
213 {"Login form"}
214 <MyLoginForm />
215 <a className="inline-block align-baseline font-bold text-sm text-blue-500 hover
:text-blue-800" href="/signup">
216 { "Sign Up" }
217
218 </div>
219 </div>
220)
221
222
223 @route("/signup")
224 page SignupPage {
225 render (
226 <div className="flex h-screen items-center justify-center bg-slate-800">
227 <div className="space-y-2">
228 {"Sign up form"}
229 <MySignupForm />
230 <a className="inline-block align-baseline font-bold text-sm text-blue-500 hover
:text-blue-800" href="/signup">
231 { "Login" %}
232
233 </div>
234 </div>
235)
236 }
Listing 9.1: Todo app source code.
Chatroom
1 app ChatRoom {
2 title: "Chat Room Created by Ra",
3 auth: {
4 userModel: User,
5 idField: id,
6 isOnlineField: isOnline,
7 lastActiveField: lastActive,
8 usernameField: username,
9 passwordField: password,
10 onSuccessRedirectTo: "/",
11 onFailRedirectTo: "/login"
12 }
13 %}
14
15 model User {
16 id Int Qid
17 username String Qunique
18 password String

43

57

isOnline Boolean @default (false)
lastActive DateTime @default(Now)

messages Message[]
}
model Message {
id Int Q@id
content String
user User @relation(userId, id)
userld Int

createdAt DateTime @default(Now)
updatedAt DateTime QupdatedAt
}

@model (Message)
O@permissions (IsAuth)
query<Create> createMessage {
data: {
fields: [content],
relationFields: {
user: connect id with userId

}
}

@model (Message)

@permissions (IsAuth)

query<FindMany> getMessages {
search: [content]

Ik

@model (User)

@permissions (IsAuth)

query<FindMany> getUsers {
search: [usernamel]

}

component<FindMany> MessagesComponent {
findQuery: getMessages() as messages,
onError: render(
<div>{ "An error occured" }</div>

P
onLoading: render(

<div>{ "Loading..." }</div>
),

onSuccess: render(
<div className="flex flex-col gap-2 flex-1">
[% for message in messages %]

<div
key={message.id}
className=[} if message.userId == LoggedInUser.id %]
{ "flex gap-2 justify-end" }
[% else %]
{ "flex gap-2" }
[% endif %]1>
<div
className=[} if message.userId == LoggedInUser.id %]
{ "p-2 rounded-1lg max-w-1lg bg-blue-100" }
[% else %]
{ "p-2 rounded-1lg max-w-lg bg-gray-100" }
[% endif %]1>
<p>{message.content}</p>

{message.user.username} {" o "}
{message.createdAt}

</div>
</div>
[% endfor %]
</div>
)

44

92 component<FindMany> OnlineUsersComponent {

93 findQuery: getUsers() as users,

94 onError: render(

95 <div>{ "An error occured" }</div>

96)

97 onLoading: render(

98 <div>{ "Loading..." }</div>

99)

100 onSuccess: render(

101 <div className="flex flex-col gap-2">

102 <div className="font-bold text-1lg mb-2">{ "Online Users" }</div>

103 [% for user in users %]

104 <div

105 className=[% if user.id == LoggedInUser.id %]

106 { "flex items-center gap-2 font-bold" }

107 [% else %]

108 { "flex items-center gap-2" }

109 [% endif %1>

110 <div

111 className=[% if user.isOnline %]

112 { "w-3 h-3 rounded-full bg-green-500" }

113 [% else %]

114 { "w-3 h-3 rounded-full bg-gray-500" }

115 [% endif %1></div>

116 <div>{ user.username }</div>

117 </div>

118 [% endfor %1

119 </div>

120)

121}

122

123 component<Create> CreateMessageForm {

124 globalStyle: {

125 formContainer: "flex w-full"

126 T

127 actionQuery: createMessage(),

128 formInputs: {

129 content: {

130 style: "flex w-full",

131 input: {

132 type: TextInput,

133 placeholder: "Type your message here...",

134 style: "flex-1 rounded-md border-gray-300 mr-2 px-4 py-2"

135 }

136 ¥s

137 user: {

138 input: {

139 type: RelationInput,

140 isVisible: false,

141 defaultValue: connect id with LoggedInUser.id

142 }

143 ¥

144 T

145 formButton: {

146 name: "Send",

147 style: "rounded-md bg-blue-500 text-white px-4 py-2"

148 }

149 }

150

151 component<SignupForm> MySignupForm {

152 globalStyle: {

153 formContainer: "bg-white shadow-md rounded px-8 pt-6 pb-8 mb-4",

154 input: "appearance-none border rounded w-full py-2 px-3 text-gray-700 leading-tight
focus:outline-none focus:shadow-outline",

155 inputLabel: "block text-gray-700 font-bold mb-2"

156 1,

157 formInputs: {

158 username: {

159 label: {

160 name: "Username"

161 },

162 input: {

163 type: TextInput,

45

164 placeholder: "Enter username"

165 }

166 Fo

167 password: {

168 label: {

169 name: "Password"

170 To

171 input: {

172 type: PasswordImnput,

173 placeholder: "Enter password"

174 }

175 ¥

176 ¥o

177 formButton: {

178 name: "Signup",

179 style: "bg-blue-500 hover:bg-blue-700 text-white font-bold py-2 px-4 rounded focus:
outline-none focus:shadow-outline"

180 }

181 }

182

183 component<LoginForm> MyLoginForm {

184 globalStyle: {

185 formContainer: "bg-white shadow-md rounded px-8 pt-6 pb-8 mb-4",

186 input: "appearance-none border rounded w-full py-2 px-3 text-gray-700 leading-tight
focus:outline-none focus:shadow-outline",

187 inputLabel: "block text-gray-700 font-bold mb-2"

188 1,

189 formInputs: {

190 username: {

191 label: {

192 name: "Username"

193 3,

194 input: {

195 type: TextInput,

196 placeholder: "Enter username"

197 }

198 Fo

199 password: {

200 label: {

201 name: "Password"

202 },

203 input: {

204 type: PasswordInput,

205 placeholder: "Enter password"

206 }

207 }

208 Ty

209 formButton: {

210 name: "Login",

211 style: "bg-blue-500 hover:bg-blue-700 text-white font-bold py-2 px-4 rounded focus:
outline-none focus:shadow-outline"

212 }

213 }

214

215 component<LogoutButton> MyLogoutButton {

216 formButton: {

217 name: "Logout",

218 style: "w-full py-2 bg-red-500 text-white rounded-lg hover:bg-red-600"

219 }

220 }

221

222 @route("/")
223 @permissions(IsAuth)
224 page Home {

225 render (

226 <div className="flex justify-center">

227 <div className="flex flex-col w-full h-screen border shadow">
228 <div className="flex flex-row h-full">

229 <div className="bg-gray-100 flex flex-col w-1/4 p-4">

230 <0OnlineUsersComponent />

231 <div className="flex justify-end mt-auto">
232 <MyLogoutButton />

233 </div>

46

234 </div>

235 <div className="flex flex-col w-3/4 p-4">
236 <div className="flex-1 overflow-y-auto">
237 <MessagesComponent />

238 </div>

239 <div className="bg-gray-100 flex flex-row p-4 rounded-1g">
240 <div className="flex-1">

241 <CreateMessageForm />

242 </div>

243 </div>

244 </div>

245 </div>

246 </div>

247 </div>

248)

249 }

250

251 @route("/login")
252 page LoginPage {

253 render (

254 <div className="flex h-screen items-center justify-center bg-slate-800">

255 <div className="space-y-2">

256 {"Login form"}

257 <MyLoginForm />

258 <a className="inline-block align-baseline font-bold text-sm text-blue-500 hover
:text-blue-800" href="/signup">

259 { "Sign Up" }

260

261 </div>

262 </div>

263)

264 }

265

266 @route("/signup")

267 page SignupPage {

268 render (

269 <div className="flex h-screen items-center justify-center bg-slate-800">

270 <div className="space-y-2">

271 {"Sign up form"}

272 <MySignupForm />

273 <a className="inline-block align-baseline font-bold text-sm text-blue-500 hover
:text-blue-800" href="/signup">

274 { "Login" }

275

276 </div>

277 </div>

278)

279 }

Listing 9.2: Chatroom source code.

Kanban Board

1 app KanbanBoard {

2 title: "Kanban Created by Ra",

3 auth: {

4 userModel: User,

5 idField: id,

6 isOnlineField: isOnline,

7 lastActiveField: lastActive,

8 usernameField: username,

9 passwordField: password,

10 onSuccessRedirectTo: "/",

11 onFailRedirectTo: "/login"

12 Fo

13 clientDep: [

14 ("react-beautiful-dnd", "~13.1.1"),
15 ("@types/react-beautiful-dnd", "~13.1.3")
16

17

18

19 model User {

20 id Int Qid

47

21

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

username String Qunique
password String
isOnline Boolean @default (false)
lastActive DateTime @default(Now)
tasks Task []
}
model Task {
id Int Qid
title String
user User @relation (userId,
userId Int
status String @default("todo")

createdAt DateTime @default (Now)
updatedAt DateTime QupdatedAt
}

@model (Task)

@permissions (IsAuth)

query<FindMany> getTasks {
search: [status]

3

@model (Task)
@permissions (IsAuth)
query<Create> createTask {
data: {
fields: [titlel,
relationFields: {
user: connect id with userId

}
}

@model (Task)
@permissions (IsAuth)
query<Update> updateTask {
where: id,
data: {
fields: [status]
}
Iy

@model (Task)

@permissions (IsAuth)

query<Delete> deleteTaskById {
where: id

}

component<Delete> TaskDeleteButton(id: Int) {
actionQuery: deleteTaskById({
where: id

b,
formButton: {
name: "Delete",
style: "text-red-500"
}

I

component<Create> TaskCreateForm {
actionQuery: createTask(),
formInputs: {

title: {
input: {
type: TextInput,
placeholder: "Enter task name",

isVisible: true,

style: "border border-gray-400 rounded px-3 py-2 w-80"

¥o
user: {
input: {
type: RelationInput,

48

id)

94 isVisible: false,

95 defaultValue: connect id with LoggedInUser.id
96 }

97 }

98 Ty

99 formButton: {

100 name: "Create',

101 style: "bg-green-500 hover:bg-green-600 text-white px-4 py-2 ml-2 rounded"
102 }

103 }

104

105 component<Custom> TaskComponent (index: Int, task: Task) {

106 imports: [|

107 import { Draggable } from "react-beautiful-dnd";

108 import TaskDeleteButton from "./TaskDeleteButton";

109 import { Task } from "@/types";

110 1,

111 fn: [|

112 return (

113 <Draggable key={index} draggableId={task.id.toString()} index={index}>
114 {(provided, snapshot) => (

115 <div

116 className={ border p-4 rounded-1g mb-2 space-y-2 ${
117 snapshot.isDragging ? "bg-gray-100" : "bg-white"
118 }}

119 ref={provided.innerRef}

120 {...provided.draggableProps}

121 {...provided.dragHandleProps}

122 >

123 <div className="flex justify-between items-center">
124 <div className="font-bold">{task.title}</div>
125 <TaskDeleteButton id={task.id} />

126 </div>

127 <div className="text-sm text-gray-500">

128 Created at {new Date(task.createdAt).tolLocaleString()} by{" "}
129 {task.user.username}

130 </div>

131 </div>

132)}

133 </Draggable>

134)

135 1]

136 %

137

138 component<Custom> Column(columnId: String, columnName: String, tasks: Task[]) {
139 imports: [|

140 import { Droppable } from "react-beautiful-dnd";

141 import TaskComponent from "./TaskComponent";

142 import { Task } from "@/types";

143 11,

144 fn: [|

145 if (!tasks) {

146 return (

147 <div >{ 'Loading...' }</div>

148)

149 };

150

151 return (

152 <div

153 className={ ${columnId === "todo" && "bg-red-200"1} ${

154 columnId === "doing" && "bg-orange-200"

155 } ${columnId === "done" && "bg-green-200"} w-90 rounded-lg p-4 mr-4"}
156 >

157 <h3 className="font-bold mb-4">{columnNamel}</h3>

158 <Droppable droppableId={columnId}>

159 {(provided) => (

160 <div ref={provided.innerRef} {...provided.droppablePropsl}>
161 {tasks &&

162 tasks.map ((task, index) => (

163 <TaskComponent

164 key={task.id}

165 task={task}

166 index={index}

49

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

}

/>
)}
{provided.placeholder}
</div>
)}
</Droppable>
</div>

component<Custom> KanbanBoard {
imports: [|

11,
fn:

import { useState, useEffect } from "react";

import { DragDropContext, DropResult } from "react-beautiful-dnd";
import TaskCreateForm from "./TaskCreateForm";

import Column from "./Column";

import { User, Task } from "@/types";

[l
type TaskStatus = "todo" | "doing" | "done";

type Tasks = {
todo: Task[];
doing: Task[];
done: Task[];
e

const storedUser = localStorage.getItem("LoggedInUser");

const [LoggedInUser, _] = useState<User | undefined>(
storedUser 7 (JSON.parse(storedUser) as User) : undefined
);
const {
data,
isLoading,
error,

} = useFetch<Task[]>({
findFunc: Queries.getTasks,
eventsFunc: Queries.getTasksEvents,
model: 'task',
accessToken: LoggedInUser.accessToken,

s

const [tasks, setTasks] = useState<Tasks>({
todo: [1],
doing: [],
done: []

P

function categorizeTasks(tasks: Task[]): { [status in TaskStatus]: Task[] } {
const categorizedTasks: { [status in TaskStatus]: Task[] } = {

todo: [],
doing: [],
done: [],

s

if (tasks) {
for (const task of tasks) {
categorizedTasks [task.status as TaskStatus].push(task);
}
}

return categorizedTasks;

}

useEffect (() => {
if (data) {
setTasks (categorizeTasks (data))
}
}, [datal)

const onDragEnd = async (result: DropResult) => {

50

240
241
242
243
244
245
246

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

303
304
305
306
307
308
309
310

const { destination, source, draggableId } = result;

if (!'destination) {

return;

}

if (destination.droppableld === source.droppableld && destination.index
index) {
return;

}

const updateTask = Queries.updateTask({ where: draggableld })

try {

await fetch(updateTask, {

b

method: 'put',
headers: {

'Content-Type': 'application/json',

Authorization: “Bearer ${LoggedInUser?.accessToken}",

},

body: JSON.stringify({ status: destination

} catch (error) {
console.log(error)

}
Irg

return (

<div className="flex flex-col items-center pt-10">

<TaskCreateForm />

<div className="flex justify-center pt-10">
<DragDropContext onDragEnd={onDragEnd}>
<div className="flex-grow">

<Column
columnId="todo"

columnName="Todo"

tasks={tasks.todo}

/>
</div>

<div className="flex-grow">

<Column

columnId="doing"

columnName="Doing"
tasks={tasks.doing}

/>
</div>

<div className="flex-grow">

<Column
columnId="done"

columnName="Done"

tasks={tasks.done}

/>
</div>
</DragDropContext>
</div>
</div>

}

component<SignupForm> MySignupForm {

globalStyle: {

formContainer:

.droppableId 1}),

"bg-white shadow-md rounded px-8 pt-6 pb-8 mb-4",

source.

input: "appearance-none border rounded w-full py-2 px-3 text-gray-700 leading-tight

focus:outline-none focus:shadow-outline",

inputLabel: "block text-gray-700 font-bold mb-2"
1,
formInputs: {
username: {
label: {
name: "Username"
By
input: {

51

311 type: TextInput,

312 placeholder: "Enter username"

313 }

314 },

315 password: {

316 label: {

317 name: "Password"

318 Fo

319 input: {

320 type: PasswordInput,

321 placeholder: "Enter password"

322 }

323 ¥

324 T

325 formButton: {

326 name: "Signup",

327 style: "bg-blue-500 hover:bg-blue-700 text-white font-bold py-2 px-4 rounded focus:
outline-none focus:shadow-outline"

328 }

329 }

330

331 component<LoginForm> MyLoginForm {

332 globalStyle: {

333 formContainer: "bg-white shadow-md rounded px-8 pt-6 pb-8 mb-4",

334 input: "appearance-none border rounded w-full py-2 px-3 text-gray-700 leading-tight
focus:outline-none focus:shadow-outline",

335 inputLabel: "block text-gray-700 font-bold mb-2"

336 o

337 formInputs: {

338 username: {

339 label: {

340 name: "Username"

341 ¥o

342 input: {

343 type: TextInput,

344 placeholder: "Enter username"

345 }

346 ¥o

347 password: {

348 label: {

349 name: "Password"

350 ¥o

351 input: {

352 type: PasswordInput,

353 placeholder: "Enter password"

354 }

355 }

356 L,

357 formButton: {

358 name: "Login",

359 style: "bg-blue-500 hover:bg-blue-700 text-white font-bold py-2 px-4 rounded focus:
outline-none focus:shadow-outline"

360 }

361 }

362

363 component<LogoutButton> MyLogoutButton {

364 formButton: {

365 name: "Logout",

366 style: "w-full py-2 bg-red-500 text-white rounded-1lg hover:bg-red-600"

367 }

368 }

369

370 @route("/")
371 @permissions(IsAuth)
372 page Home {

373 render (

374 <KanbanBoard />
375)

376 }

377

378 @route("/login")
379 page LoginPage {
380 render (

52

381 <div className="flex h-screen items-center justify-center bg-slate-800">

382 <div className="space-y-2">

383 {"Login form"}

384 <MyLoginForm />

385 <a className="inline-block align-baseline font-bold text-sm text-blue-500 hover
:text-blue-800" href="/signup">

386 { "Sign Up" }

387

388 </div>

389 </div>

390)

391 }

392

393 @route("/signup")
394 page SignupPage {

395 render (

396 <div className="flex h-screen items-center justify-center bg-slate-800">

397 <div className="space-y-2">

398 {"Sign up form"}

399 <MySignupForm />

400 <a className="inline-block align-baseline font-bold text-sm text-blue-500 hover
:text-blue-800" href="/signup">

401 { "Login" }

402

403 </div>

404 </div>

405)

406 }

Listing 9.3: Chatroom source code.

53

Chapter 10
Appendix 4:

Questions

Introduction

User Experiment

1- How many years of programming experience do you have?

e None

e Less than 1 year

e 1-3 years

e 3-5 years

e More than 5 years

2- What programming languages are you comfortable working with? (Select all that apply)

o Java

o JavaScript
e TypeScript
e Python

e Rust

e Ruby

« PHP

e None

3- How would you rate your web development skills?

e None

o Beginner

e Intermediate
¢ Advanced

o Expert

4- What web development technologies are you familiar with? (Select all that apply)

« HTML

« CSS

o JavaScript
e None

5- What frontend frameworks are you familiar with? (Select all that apply)

54

=

N O U W N

H O WO Utk W~

¢ React
e Qwik

e Svelte
e SolidJS
e Angular
 jQuery
e None

6- What backend frameworks are you familiar with? (Select all that apply)

o Django

e Flask

e Ruby on Rails

o Laravel

o NodeJS/ExpressJS
e Other

7- Have you used an ORM before?

e Yes
« No

8- Are you familiar with Prisma ORM?

¢ Yes
« No

Syntax Comprehension Test

9- How easy is it to understand this code snippet on a scale of 1 to 5, where a higher number indicates
that the task is easier?

model Task {

id Int eid
title String
isDone Boolean @default(false)

createdAt DateTime @default(Now)
updatedAt DateTime QupdatedAt

Listing 10.1: User experiment - Code snippet 1.

10- In few words, please explain what did you understand (leave it empty if you did not understand
anything)

11- How easy is it to understand this code snippet on a scale of 1 to 5, where a higher number indicates
that the task is easier?

model User {

id Int Qid
tasks Task []
}
model Task {
id Int Qid
title String
user User @relation(userId, id)
userId Int
}

Listing 10.2: User experiment - Code snippet 2.

55

H O ©OWO0 Utk W~

—

© 00O Ut WN -

O © 00O Uk W

—_

12- In few words, please explain what did you understand (leave it empty if you did not understand
anything)

13- How easy is it to understand this code snippet on a scale of 1 to 5, where a higher number indicates
that the task is easier?

model Task {
id Int Qid
title String
categories Categoryl[]

}

model Category {
id Int Qid
name String
tasks Task[]

}

Listing 10.3: User experiment - Code snippet 3.

14- In few words, please explain what did you understand (leave it empty if you did not understand
anything)

15- How easy is it to understand this code snippet on a scale of 1 to 5, where a higher number indicates
that the task is easier?

@model (Task)

@permissions (IsAuth, OwnsRecord)

query<FindMany> getTasks {
search: [title, isDone]

3

component TaskDetailComponent (task: Task) {
render (
<div className="flex mb-4 items-center'">
<div className="w-full text-gray-500 text-x1">{ task.title }</div>
</div>
)
}

component<FindMany> TaskListComponent {
findQuery: getTasks() as tasks,
onError: render(<div>{ "Error fetching tasks" }</div>),

onLoading: render (<div>{ "Loading tasks..." }</div>),
onSuccess: render (
<>

[% for task in tasks %]
<TaskComponent task={ task } />
[% endfor %]
</>

Listing 10.4: User experiment - Code snippet 4.

16- In few words, please explain what did you understand (leave it empty if you did not understand
anything)

17- How easy is it to understand this code snippet on a scale of 1 to 5, where a higher number indicates
that the task is easier?

@model (Task)
Q@permissions (IsAuth)
query<Create> createTask {
data: {
fields: [title 1,
relationFields: {
user: connect id with userId
}
}
}

56

11
12
13
14
15
16
17
18

20
21
22
23
24
25

27
28
29
30
31
32

0O~ U WN -

= O ©OoO0 Utk WN

—

component<Create> TaskCreateForm {
actionQuery: createTask(),

formInputs: {
title: {
input: {
type: TextInput,
placeholder: "Enter task title"
}
3,
user: {
input: {
type: RelationInput,
isVisible: false,
defaultValue: connect id with LoggedInUser.id
}
}
}’
formButton: {
name: "Create"
}
}

Listing 10.5: User experiment - Code snippet 5.

18- In few words, please explain what did you understand (leave it empty if you did not understand
anything)

19- How easy is it to understand this code snippet on a scale of 1 to 5, where a higher number indicates
that the task is easier?

@model (Task)

@permissions (IsAuth, OwnsRecord)

query<Delete> deleteTaskById {
where: id

}

component<Delete> TaskDeleteButton(id: Int) {
actionQuery: deleteTaskById ({
where: id

b,

formButton: {
name: "Delete"

}

}
Listing 10.6: User experiment - Code snippet 6.

20- In few words, please explain what did you understand (leave it empty if you did not understand
anything)
Developer Experience Test

21- In few words, can you explain why the compiler is raising this error and how it can be fixed? (Leave
it empty if you don’t know)

Compiler error

UndefinedError(“@(Line:15): Undefined field ‘name’ in Model ‘Task’”) “In few words, can you explain

model Task {

id Int Qid
title String
isDone Boolean @default(false)

createdAt DateTime @default (Now)
updatedAt DateTime QupdatedAt
}

@model (Task)

@permissions (IsAuth)
query<Create> createTask {

57

© 00O Ut WN -

© 00O U W

DN DD = = = e e e e e e
= O ©Oo O Uk W~ O

data: {
fields: [title, name],
relationFields: {
user: connect id with userId
}
}
¥

Listing 10.7: User experiment - Code snippet 7.

22- In few words, can you explain why the compiler is raising this error and how it can be fixed? (Leave
it empty if you don’t know)

Compiler error

TypeError(“@Q(Line:20): Excepted a value of type ‘Task’ but received ‘task’ of type ‘String’ in ‘TaskDe-
tailComponent’ ”)

component TaskDetailComponent (task: Task) {
render (
<div className="flex mb-4 items-center">
<div className="w-full text-gray-500 text-x1">{ task.title }</div>
</div>
)
}

component<FindMany> TaskListComponent {
findQuery: getTasks() as tasks,
onError: render(<div>{ "Error fetching tasks" }</div>),

onLoading: render (<div>{ "Loading tasks..." }</div>),
onSuccess: render (
<>

[% for task in tasks %]
<TaskComponent task={ "task" } />
[% endfor %]
</>

Listing 10.8: User experiment - Code snippet 8.

23- In few words, can you explain why the compiler is raising this error and how it can be fixed? (Leave
it empty if you don’t know)

Compiler error

FormInputTypeError(“@(Line:6): Expected an input of type ‘TextInput’ for field ‘title’ but an input of
type ‘NumberInput’ was implemented instead in ‘TaskCreateForm’”)

component<Create> TaskCreateForm {
actionQuery: createTask(),
formInputs: {
title: {
input: {
type: NumberInput,
placeholder: "Enter task title"

}
3,
user: {
input: {
type: RelationInput,
isVisible: false,
defaultValue: connect id with LoggedInUser.id
}
}
}’
formButton: {
name: "Create"
}

}
Listing 10.9: User experiment - Code snippet 9.

58

© 00O Ut WN -

0~ Uk WN -

24- In few words, can you explain why the compiler is raising this error and how it can be fixed? (Leave
it empty if you don’t know)

Compiler error

TypeError(“@(Line:4): Excepted a value of type ‘String’ but received ‘false’ of type ‘Boolean’ in ‘de-
fault?’”)

model Task {

id Int @id

title String

isDone String @default (false)

user User @relation(userId, id)
userId Int

createdAt DateTime @default(Now)
updatedAt DateTime QupdatedAt

Listing 10.10: User experiment - Code snippet 10.

25- In few words, can you explain why the compiler is raising this error and how it can be fixed? (Leave
it empty if you don’t know)

Compiler error

UniqueFieldError(“@(Line:14): Excepted a field of type ‘UniqueField’ but received ‘title’ of type ‘NonUnig-
ueField’ in ‘deleteTaskByld’ ”)

model Task {

id Int @id
title String
isDone Boolean @default(false)

createdAt DateTime @default (Now)
updatedAt DateTime QupdatedAt
}

@model (Task)
Q@permissions (IsAuth, OwnsRecord)

query<Delete> deleteTaskById {
where: title

}
Listing 10.11: User experiment - Code snippet 11.

Reflection

26- How do you feel about the syntax on a scale of 1 to 5, where a higher number indicates that the bigger
the better?

27- Were there any particular aspects of the DSL syntax that you found challenging or confusing?
28- Were there any aspects of the DSL that you feel could be improved or made more user-friendly?

29- On a scale of 1 to 5, where a higher number indicates that the bigger the better, how helpful were the
compiler messages in identifying and fixing bugs in the DSL code?

30- Which of the following compiler messages that you found particularly helpful or informative? (Select

all that apply)

e UndefinedError

o TypeError

e UniqueFieldError

e FormInputTypeError

31- Would you use the DSL or similar tool for personal projects?

59

e Yes
« No
e Maybe

32- What size would this DSL be helpful for?

e Small projects

e Medium projects
o Large projects

e None

Results

Programming Experience

More than 5 years

1-3 years

3-5 years

Web Development Experience

Beginner

None

Advanced

Intermediate

(b)

Figure 10.1: Participants’ programming and web experience.

Rating Distribution Q9. (Average: 4.56)

Rating Distribution Q15. (Average: 4.00)

Rating Distribution Q11. (Average: 4.33)

(b)

Rating Distribution Q17. (Average: 3.67)

3
Rating

(¢)

Rating Distribution Q13. (Average: 4.00)

()

Rating Distribution Q19. (Average: 4.78)

3
Rating

()

Figure 10.2: The rating distribution of each code snippet, as rated by the participants.

60

Question Participant A (25 min) Participant B (60 min) Participant C (30 min)
No.
1 More than 5 Years More than 5 years More than 5 years
2 Python Java, JavaScript, Python, Rust Java, JavaScript, Python,
TypeScript
3 None Beginner Beginner
4 HTML, CSS, JavaScript HTML, CSS, JavaScript HTML, CSS, JavaScript
5 None jQuery React
6 NodeJS/ExpressJS Django, Flask Django, NodeJS/ExpressJS
7 No No No
8 No No No
9 5 4 4
10 an entity called Task that has It defines the data model for a A Task model is being defined
properties (unique id, title, is task which is described by five with 5 attributes (eg. id). Each
done? property, the time it is fields. The first column is the attribute has an expected
updated and created) field’s name, the second datatype. For example, the
column is its data type, and value of isDone is expecated to
the third is for extra attributes. be a boolean, true or false.
@default specifies a field’s Some of the attributes are
default value. @id specifies initialised with a default value
that a field is a unique if one isn’t provided at the
identifier /primary key. 'm not time of instantiating this
sure what @QupdatedAt does. model. For example, the value
of isDone will be set to false if
a value isn’t provided.
11 5 5 3
12 Same as the previous question This defines two entities User Two model/object definitions.
but has user assigned to it and Task. A User has an One is of type User, one is of
integer ID which is its primary type Task. The User model has
key and an array of tasks. A an attribute/property called
task has an integer ID, a string tasks and it is expected to be
title, a user ID and a reference an array of elements that are of
to the User with that ID. type Task. The Task model
@relation describes a relation has a property called user
using a foreign key and the which is of type User and
primary key it relates to. In declares a relationship between
other words there is a its own userld property and
one-to-many relation from User the User model’s id property.
to Task.
13 5 5 4
14 Same as the previous but has a This describes two entities Two models/objects being
category and the category has Task and Category which have defined with a set of properties
its own properties a many-to-many relationship. and those properties expected
Both entities have an integer datatypes. The Category
ID and a string title/name. A object accepts an array of Task
Task has an array of categories objects for the tasks property
and a Category has an array of and the Task object accepts an
tasks. array of Category objects for
the categories property.
15 2 3 5

61

Continued on next page...

16 It is getting all the tasks, then getTasks is a query that getTasks: A query to get tasks
visualizing the tasks searches for many Tasks is defined to extract and store
according to the tasks’ ’title’ the title and the value of
and ’isDone’ fields. It has the isDone for all the tasks
IsAuth and OwnsRecord available in the record. It can
permissions. be executed on the Task model.
TaskDetailComponent is a Ul The requirements for this to be
element that takes a task as a allowed involve the end user’s
parameter, and displays a its account being authenticated
title inside some formatted and owning a record.
<div>s. TaskDetailComponent: A
TasksListComponent is a Ul definition of a component that
element that uses the getTasks takes in an object of type Task
query to obtain a list of tasks. and consists of two nested div
While the query is loading a blocks. The outer one centres
message is displayed. If the the inner div. The inner div
query succeeds each task is allows the title of the task to
displayed in a be rendered in an extra large
TaskDetailComponent. If an grey font.
error occurs an error message is TasksListComponent: The
displayed. returned values from the
getTasks query are stored as a
variable called tasks. If there is
an error while executing the
getTasks query, a div block is
rendered on the page,
informing the user that there
was an "Error fetching tasks”.
While attempting to retrieve
the tasks, the div block is
rendered with the "Loading
tasks” text. If the getTasks
query is executed completely
with no issues, a list of
TaskDetailComponents are
rendered on the page based on
the output of the query where
each TaskDetailComponent
displays information about
each task in the list.
17 1 3 5

62

Continued on next page...

18 N/A createTask is a query that The end user must have an
creates a Task by providing its authenticated account for the
title and relating its userld to a following code to be executed.
user. It allows the end user to fill in
TaskCreateForm is a Ul a form where they can create a
component that is a form task
which triggers the createTask
query when submitted. It has a
text input field for the task’s
title and a hidden input for the
user’s ID, as well as a button
to submit the form. The title
input has some placeholder
text. The user input uses the
ID of the logged-in user.

19 5 4 5

20 Implemeting a delete tas deleteTaskByld is a query for User must be logged in and
functionality in UI with query deleting the Task that has a have an existing record. The

particular ID. code allows the user to delete a
TaskDeleteButton is a Ul task through the use of a delete
element that is parameterised button

by an integer ID. It defines a

button with the text "Delete”

which triggers the

deleteTaskByld query using

the given ID.

21 there is no name property in The createTask query specifies ~ The name field does not exist

Task Model a 'name’ field for a Task, but in the Task model. This needs
Tasks do not have a field called to be defined in the model with
‘name’. You could remove a datatype (eg String).
‘name’ from line 15 so that it
only contains ’title’, or add a
field called 'name’ to Task.

22 it should not be inside ”” it Instead of providing the 'task’ The TaskDetailComponent
should be only the variable variable to each component expects a Task
task TaskDetailComponent, the object being passed in. Line 20

string literal "task” is used. passes in a string. The value,

Remove the double quotes in task, can be passed in without

line 20. speech marks to solve the
problem.

23 The title should have The ’title’ input field is of type The title field should be a
TextInput instead of the NumberInput but should be a string and therefore the user
NumberInput TextInput. Replace input should be of type

NumberInput in line 6 with TextInput rather than

TextInput. NumberInput as this would
mean the title is of the wrong
type for the model

24 As its default is boolean not The boolean value ’false’ was The default value and expected

string as it is defined type

provided as a default value for
the String field ’isDone’.
Replace 'String’ with 'Boolean’
in line 4.

datatype for the isDone field
are contradicting each other.
The datatype should be
changed to Boolean to solve
the problem.

63

Continued on next page...

25 as title is not unique it should The query deleteTaskByld is The id should be used rather

have been id instead deleting according to a Task’s than the title as this is a
‘title’ field, which is not a unique identifier
unique field. Replace ’title’ in
line 14 with ’id’.

26 4 4 4

27 not really, maybe the part of ui It was not clear what some of I only realised at the last
was more challenging the attributes (@something) question what the significance

do. of the @ symbol was when
The angle-bracket notation for defining the model.
different types of query was not

clear at first. It resembles type

parameters in C++ or Rust

but I'm unsure whether

"Create’, 'FindMany’ and

"‘Delete’ are types.

28 maybe the closeness of the The language itself seems like The syntax in general is really
language to the human it would be very usable after good and I could understand
language taking some time to learn it. most of it. No improvements

Because it uses type inference, needed
an editor plugin that enables

inspecting the inferred types

would be very helpful.

29 5 5 5

30 UndefinedError, TypeError, UndefinedError, TypeError, UndefinedError, TypeError,
FormInputTypeError, FormInputTypeError FormInputTypeError,
UniqueFieldError UniqueFieldError

31 Yes Yes Maybe

32 Medium projects Medium projects Medium projects

64

Question Participant D (31 min) Participant E (46 min) Participant F (22 min)
No.
1 More than 5 Years More than 5 Years More than 5 years
2 Java, JavaScript, Python Java, JavaScript, TypeScript, TypeScript, JavaScript, PHP,
Python Python
3 Intermediate Advanced Advanced
4 HTML, CSS, JavaScript HTML, CSS, JavaScript HTML, CSS, JavaScript
5 React, Angular, jQuery React, Angular, jQuery React, Angular, jQuery
6 Flask, NodeJS/ExpressJS Django, Flask, Laravel, NodeJS/ExpressJS,
NodeJS/ExpressJS Flask
7 No Yes Yes
8 No Yes Yes
9 5 4 5
10 it defines a model called Task This is a data model I understand that the snippets
which has 5 properties and of representing a Task. The Task above defines a database model,
designed types. Id is of type has the field id which is an where ‘id‘ field is an integer
Int and is unique. Isdone and integer and is also the Task’s primary key, ‘title‘ is a string
createat have respectively unique identifier. The Task field, ‘isDone’ is a boolean field
default values when created also has the fields title, which with a default value of false,
and not assigned. is a string, isDone which is a ‘created At is a timestamp field
boolean defaulted to false (so with default value as the
when no value is provided, it current server’s timestamp, I
will be false), createdAt which guessed that‘@updated At
is a datetime defaulted to the notation maps the field to the
time of the Task object’s time of the most recent update.
instantiation, and updatedAt
which is a datetime that is
automatically updated every
time the Task object is
updated.
11 4 5 5

65

Continued on next page...

12

2 models. Similar to previous
one. I don’t understand what
the parameters for @relation
are, weather the id for the
parameters refers to task or
user. Also why wr need userid
and user entity belongs to task
together. The info for user and
userid should be defined
separately if considering
database / software design?

The code snippet shows User
and Task models. The User
has an id field which is an
integer, and is the User model’s
unique identifier. User also has
a tasks field which is an array
of the Task objects. The Task
model has an id field which is
an integer, and is the Task
model’s unique identifier. Task
also has a title field which is a
string, user field which is
actually a relation representing
a User object, and the
relation’s id (userid, which is a
foreign key). This establishes
one-to-many relationship,
where one User can have many
Tasks, but one Task can only
be tied to one User.

‘User‘ model has a one to many
relationship with ‘Task‘ model,
the foreign key on ‘Task‘ is
‘userld* field.

13

1

5

4

14

There’s a definition loop

The code snippet shows Task
and Category models. The
Task model has an id field
which is an integer, and is the
Task model’s unique identifier.
Task also has a title field which
is a string, and a categories
field which is an array of
Category objects. The
Category model has an id field
which is an integer, and is the
Category model’s unique
identifier. Category also has a
name field which is a string,
and a tasks field which is an
array of Task objects. I can
interpret from this code
snippet that this establishes a
many-to-many relationship
between Task and Category,
where one Task can have many
Categories, and one Category
can have many Tasks.

A many-to-many relationship.
It’s a bit confusing, but I
believe it implies that the
schema, parser would
automatically create pivot/join
table and connect records?

15

5

66

Continued on next page...

16

Reads tasks as list and use each
data to render a component for
all data. List rendering deals
with error etc cases.

TaskCreateForm is a
component that neatly
represents a form. This form
has title and user inputs. This
form is used to create a task.
The input type for the title is
TextInput, meaning just text.
The input type for the user is
RelationInput. The user input
is not visible, as the user does
not manually enter it, instead
it is automatically filled using
the logged in user’s ID. When
the form is submitted, by
clicking the button that says
”Create”, it invokes the
createTask() query, specified by
actionQuery in the form
component. The createTask
query then uses the inputs to
the form to create a Task
record. The user that clicks
‘create’ can only create a Task
record using this form if they
are authenticated.

Seems like a field relevant to
Task database Model. I assume
the permission annotation
would only make it accessible
for this who created the record.
FindMany query definition at
the top is a bit confusing, I am
not sure if search defines
searchable items or selected
fields.

TaskListComponent seems to
be a data fetching handler and
view manager for TaskList, I
expect that findQuery is the
data source, onError,
onLoading, onSuccess is for
handling views in different data
fetching states.

17

4

5

5

18

Renders a form but I don’t
know what’s the connect
syntax’s meaning

TaskCreateForm is a
component that neatly
represents a form. This form
has title and user inputs. This
form is used to create a task.
The input type for the title is
TextInput, meaning just text.
The input type for the user is
RelationInput. The user input
is not visible, as the user does
not manually enter it, instead
it is automatically filled using
the logged in user’s ID. When
the form is submitted, by
clicking the button that says
”Create”, it invokes the
createTask() query, specified by
actionQuery in the form
component. The createTask
query then uses the inputs to
the form to create a Task
record. The user that clicks
‘create’ can only create a Task
record using this form if they
are authenticated.

Same as the previous answer,
on model and permission fields.
The create query creates a task
and links it to the
authenticated user.
‘TaskCreateForm' is defining
the query that’s to be executed
on form submission, and the
inputs to show in the frontend
form.

19

67

Continued on next page...

20 Renders a button and defines TaskDeleteButton is a Pretty much the same as the
the delete JH behaviour for component that simply pervious one, but instead of
button represents a button. This Creation, it handles deletion

button reads "Delete”, and form and query.
when clicked it invokes the
deleteTaskByld() query,
specified by actionQuery inside
the component. The
deleteTaskByld query takes a
single 'where’ argument, which
specifies the ID for the Task
record to delete. The user that
clicks ’delete’ can only delete
the Task record if they are
authorised and own the Task
record that they are trying to
delete.

21 name probably should be The error arises because there The createTask query has a
replaced by title is no 'name’ field in the Task field that doesn’t exist inside

model. This can be fixed by the ‘Task‘ model, can be fixed
removing 'name’ from the fields by either adding a ‘name* field
in the createTask query, or by to ‘Task® model or removing
creating a 'name’ field in the ‘name‘ from data fields.

Task model.

22 Probably should remove “” for ~ The error arises because you The value passed to

task are passing the task prop to TaskDetailComponent doesn’t
the TaskDetailComponent as a match the expected type, can
string. It is specified in the be fixed by replacing "task”
signature of with task.
TaskDetailComponent that the
task prop should be of type
Task, and not of type String.
To fix this, remove the quotes
around "task” on line 20.

23 Change numberinput to The error arises because you The form input type is set to

TextInput

have put the input type for the
'title’ field in the form to be a
NumberInput. To fix this,
replace NumberInput with
TextInput, because the title
field in the Task model is a
String not a Number/Integer.

NumberInput, the ‘Task’
database model maps this field
to ‘String‘. This can be fixed
by using ‘Stringlnput‘ (if
available idk) on line 6

68

Continued on next page...

24

Change the type to Boolean or
false to some string value

This error arises because you
are passing a boolean default
value (false) to a String field.
To fix this, isDone should be of
type Boolean not of type
String. Alternatively, if you
want isDone to be of type
String then the default value
should also be a String, e.g.
(double empty quotes).

99

The default value for a string
field is set to a boolean value.
This can be fixed by replacing
‘String* value with ‘Boolean‘ on
line 4

25

Change title to id

This error arises because you
are using ’title’ as the where
clause for selecting a task to
delete in the deleteTaskByld
query. The title field is not a
unique identifier for the Task
model, and as such two Task
records could have the same
title field value, causing
uncertainty when deleting on
'where title’. To fix this, you
should replace ’title’ on line 14
with ’id’. This is because id is
the unique identifier for the
Task model, highlighted by the
@id attribute on line 2.

The delete query is depending
on a non-unique field, which
means that it can delete
multiple records by mistake.
Can be fixed by replacing title
with id on line 14

26

5

4

27

N/A

The <> syntax was a little
confusing, but this is because I
am not so confident with
generics in general. I am
assuming these are similar to
generics, because of the <>
syntax which represents
generics in TypeScript.
However, it did not impede my
ability to understand the code
syntax. In fact, in many cases
it helped.

With the delete query it was a
bit confusing how the DSL
differs from DELETE and
DELETE many.

28

Can’t think of

It would be good to have some
documentation that describes
the meaning of the values in
the <> syntax, such as the
different query types. Other
than that, this syntax appear
very easy to use and
understand.

N/A

29

5

5

5

30

UndefinedError, TypeError,
FormInputTypeError,
UniqueFieldError

UndefinedError, TypeError,
FormInputTypeError,
UniqueFieldError

UndefinedError, TypeError,
FormInputTypeError,
UniqueFieldError

69

Continued on next page...

31 Maybe Yes Maybe

32 Medium projects Large projects Small projects

70

Question Participant G (34 min) Participant H (64 min) Participant I (50 min)
No.
1 1-3 years 1-3 years 3-5 years
2 Java, Python JavaScript, TypeScript, Python, Rust
Python, PHP
3 Beginner Intermediate Beginner
4 HTML, CSS HTML, CSS, JavaScript None
5 None React, jQuery None
6 Django Laravel, NodeJS/ExpressJS Django
7 No Yes Yes
8 No No No
9 4 5 5
10 A Task has 5 attributes (id, It is table for tasks that This code defines a table within
title, isDone, createdAt and indicates if a task is done or a database for storing tasks.
updatedAt) each attribute is a not. Also, it specify its title Each task has a title, whether
different type, e.g id in an and when it is added and it is completed (false by
integer, title is string etc. updated. default), when it was created
(now by default) and when it
was updated (automatically
incremented on each update).
The ’id’ column is the primary
key for each entry in this table
11 4 5 3
12 Each user has an id and an one record in a table User can ~ There is a User table and a
array of tasks, each task has an be associated with one or more Task table within the database.
id, title and a user that its records in table Task Each task has a user relation,
connected to and a user can have multiple
tasks related to them. What I
don’t properly understand is
why there is a 'userld’” and a
‘user’ in the Task model
13 3 5 4
14 A task can have an id, title and one or multiple records in a This represents a
be a part of many categories. table Task can be associated many-to-many relationship
A category has an id, a name with one or multiple records in ~ between tasks and categories.
and an array of tasks which are table Categories.
part of it
15 3 5 4

71

Continued on next page...

16 I think it is trying to fetch all fetch the done tasks and list The TasksListComponent
the tasks in the database and them by title executes the getTasks query,
rendering it onto the webpage returning the ’title’ and
if successful. "isDone’ for all tasks owned by

the user visiting the component.
The TasksListComponent also
has separate HTML defined for
loading a page and if there is
any error. On success of the
query, the
TasksListComponent renders
the TaskDetailComponent for
each of the user’s tasks.

17 3 4 3

18 I think this is creating the page create a new task and link it by The TaskCreateForm takes as
in which the user can create a the logged in user input a task title, as well as the
task where they enter a task user (but this is grabbed
title which is connected to that automatically based on who is
user. then they press 'create’ logged in). The createTask
button to create it query is executed with the user

and title, to create a task with
a user. The task is related to
the user based on ’connecting’
ids but I don’t properly get this

19 4 5 5

20 Deleting the task with the just delete a task This defines a
corresponding id. User can TaskDeleteButton component
press 'Delete’ button to delete that takes as input an ID, and
it executes a query to delete the

Task with that id, provided the
user owns that record. This
button is also labelled with
"Delete’.

21 ‘name’ is not a valid attribute Task model is created in a In the createTask query, there

name in the Task model wrong way is a reference to a 'name’ field
in Task, but this field does not
exist in the Task model. To fix
this, 'name’ should be replaced
with "user’.

22 Here, "task” is a string but it task is passed as a string not as The TaskDetailComponent has
needs to be of type task. Get a variable been given the string "task”
rid of the quotation marks when it should have been

passed a task object. To fix

this, remove the quotation

marks from ”task” on line 20.
23 The type in line 6 should be title should be string The Task title should be text

TextInput instead of
NumberInput as the user is
entering a title for the task

instead of a number. To fix
this, replace 'NumberInput’
with *TextInput’ on line 6.

72

Continued on next page...

24

In line 4, the isDone attribute
should be of type Boolean
instead of string

isDone should be Boolean

isDone is defined to be a String
type, but has been given a
boolean default value. To fix
this, either set the default value
to be a string, such as "false”,
or better, change isDone to be
a Boolean column.

25

title is not if type
"UniqueField’, should be id
instead

title is not unique field it
should be replaced by id for
example

The deleteTaskByld query
requires a unique field from the
Task model. ’title’ is not
unique. To fix this, provide a
unique field on line 14. In this
case, we should replace ’title’
with the id field on line 14

26

4

4

27

wasn’t too sure what the @
signs meant but Im not very
good at programming so could
just be me

NO

I found the definition of
relations to sometimes be
confusing. The many-to-many
syntax with [] square brackets
was great and very simple!!
But I was confused by the
foreignkey ’connect’ syntax for
ids, as well as when the Task
model required both a ’user’
AND a userld to be specified in
its model definition, in order to
be linked to a User.

At first I was confused a bit by
the scope of some variables.
For instance, some of the
components referred to things
such as ’title’ and ’task’, when
they were never provided as
inputs to the component.
Although I did eventually
understand that these were
defined globally in the file.

28

no

N/A

Perhaps the syntax for
‘connecting’ ids as mentioned
before, or at least it would
need clear documentation.

29

5

4

5

30

UndefinedError,
FormInputTypeError

UndefinedError, TypeError,
FormInputTypeError,
UniqueFieldError

UndefinedError, TypeError,
FormInputTypeError,
UniqueFieldError

31

Yes

Yes

Maybe

32

Small projects

Medium projects

Medium projects

73

References

(1]

2]

(3]

(4]

(5]

[6]

[7]

(8]

(9]

(10]

(11]

(12]

“TypeScript-first schema validation with static type inference.” https://github.com/colinhacks/zod.

i

E. Cooper, S. Lindley, P. Wadler, and J. Yallop, “Links: Web programming without tiers,” in Formal methods for

components and objects, 2007, pp. 266—296.

The opa language for web application development. 2011 [Online]. Available: http://opalang.org/

M. Serrano, Hop, multitier web programming. Inria, 2006 [Online]. Available: http://hop.inria.fr

Wasp: Develop full-stack web apps without boilerplate. 2020 [Online]. Available: https://wasp-lang.dev/

Stack Overflow, “Stack overflow developer survey 2022 2022 [Online]. Available: https://survey.stackoverflow.co/
2022 /#most-popular-technologies-webframe

“Prisma schema API (Reference).” https://www.prisma.io/docs/reference/api-reference/prisma-schema-reference.

Windi CSS Team, “Windi CSS.” https://windicss.org/.

“Jinja.” https://jinja.palletsprojects.com/en/3.1.x/.

Atlassian, “GitHub - atlassian/react-beautiful-dnd: Beautiful and accessible drag and drop for lists with React.”
https://github.com/atlassian/react-beautiful-dnd, 2022.

V. Markan, “React SEO Best Practices and Strategies.” https://www.toptal.com/react/react-seo-best-practices.

“JSX.” https://facebook.github.io/jsx/.

74

http://opalang.org/
http://hop.inria.fr
https://wasp-lang.dev/
https://survey.stackoverflow.co/2022/#most-popular-technologies-webframe
https://survey.stackoverflow.co/2022/#most-popular-technologies-webframe

	Abstract
	Introduction
	Background
	Impedance Mismatch Problem
	Boilerplate Code Problem

	Related Work
	Multitier Programming
	No-boilerplate Programming

	Analysis and Specification
	Key Features and Syntax
	App Configurations
	Data Models
	Model Fields
	Relations

	Queries
	UI Components
	Render Expressions
	General Components
	Fetch Components
	Action Components
	Create and Update Forms
	Delete Buttons

	Pages
	Authentication and Permissions
	Customization and Inline TypeScript

	Design and Implementation Details
	Compiler Architecture
	Compiled App
	Syntax Highlighting

	Evaluation
	Evaluation through Application Development
	Evaluation on Requirements
	User Evaluation
	Issues

	Conclusion
	Future Work

	Appendix 1: Language Grammar
	Appendix 2: Source Code
	Appendix 3: Applications Source Code
	Appendix 4: User Experiment
	References

